cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283799 Number of dispersed Dyck prefixes of length 2n and height n.

Original entry on oeis.org

1, 2, 5, 12, 36, 90, 286, 728, 2380, 6120, 20349, 52668, 177100, 460460, 1560780, 4071600, 13884156, 36312408, 124403620, 326023280, 1121099408, 2942885946, 10150595910, 26681566392, 92263734836, 242799302200, 841392966470, 2216352204360, 7694644696200
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2017

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 1+n^2, ((512*(2*n-5))
          *(2519*n-1279)*(n-2)*(2*n-3)*a(n-3) +(192*(2*n-3))
          *(1710*n^3-443*n^2-4990*n+2483)*a(n-2) -(24*(22671*n^4
          -124866*n^3+216436*n^2-129032*n+24526))*a(n-1))
           / ((3*n+2)*(27*n+9)*(855*n-1504)*n))
        end:
    seq(a(n), n=0..30);
    a := n -> binomial(2*n, n-iquo(n+1, 2)) + binomial(2*n, iquo(n+1,2)-1):
    seq(a(n), n = 0..28);  # Peter Luschny, Jan 17 2025
  • Mathematica
    b[x_, y_, m_] := b[x, y, m] = If[x == 0, z^m, If[y > 0, b[x - 1, y - 1, m], 0] + If[y == 0, b[x - 1, y, m], 0] + b[x - 1, y + 1, Max[m, y + 1]]];
    a[n_] := Coefficient[b[2n, 0, 0], z, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A282869 *)

Formula

Recursion: see Maple program.
a(n) = A282869(2*n, n).
From Vaclav Kotesovec, Mar 26 2018: (Start)
Recurrence: 3*n*(3*n + 1)*(3*n + 2)*(3*n^3 - 11*n^2 + 10*n - 3)*a(n) = - 24*(2*n - 1)*(6*n^3 - 1)*a(n-1) + 64*(n-1)*(2*n - 3)*(2*n - 1)*(3*n^3 - 2*n^2 - 3*n - 1)*a(n-2).
a(n) ~ ((3+2*sqrt(3)) - (-1)^n*(3-2*sqrt(3))) * 2^(4*n + 1) / (sqrt(Pi*n) * 3^(3*n/2 + 2)). (End)
From Peter Luschny, Jan 17 2025: (Start)
a(n) = binomial(2*n, n - floor(n/2 + 1/2)) + binomial(2*n, floor(n/2 + 1/2) - 1).
a(n) = A379822(n, (n + 1)/2). (End)