cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283833 For t >= 0, if 2^t + t - 3 <= n <= 2^t + t - 1 then a(n) = 2^t - 1, while if 2^t + t - 1 < n < 2^(t+1) + t - 3 then a(n) = 2^(t+1) + t - 2 - n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 2, 1, 7, 7, 7, 6, 5, 4, 3, 2, 1, 15, 15, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 31, 31, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 63, 63, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2017

Keywords

Examples

			1,1,1;
;
3,3,3;
2,1;
7,7,7;
6,5,4,3,2,1;
15,15,15;
14,13,12,11,10,9,8,7,6,5,4,3,2,1;
31,31,31;
30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,10,9,8,7,6,5,4,3,2,1;
63,63,63;
62,61,60,59,...
		

Crossrefs

Cf. A145071.

Programs

  • Maple
    A283833 := proc(n)
        local t;
        if n =0 then
            return 1;
        end if;
        for t from 0 do
            if 2^t+t-3 <= n and n<= 2^t+t-1 then
                return 2^t-1 ;
            elif 2^t+t-1 <= n and n<= 2^(t+1)+t-3 then
                return 2^(t+1)+t-2-n ;
            end if;
        end do:
    end proc: # R. J. Mathar, Mar 28 2017
  • Mathematica
    a[0] = 1; a[n_] := For[t = 0, True, t++, Which[2^t + t - 3 <= n && n <= 2^t + t - 1, Return[2^t - 1], 2^t + t - 1 <= n && n <= 2^(t + 1) + t - 3, Return[ 2^(t + 1) + t - 2 - n]]];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Dec 09 2017, from Maple *)
  • PARI
    a(n) = {if (n==0, return (1)); for (t=0, oo, if (((2^t+t-3) <= n) && (n <= 2^t+t-1), return (2^t-1)); if (((2^t+t-1) <= n) && (n <= 2^(t+1)+t-3), return (2^(t+1)+t-2-n)););} \\ Michel Marcus, Aug 21 2017