cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A284102 Numbers that are the sum of 10 consecutive primes and also the sum of 10 consecutive semiprimes.

Original entry on oeis.org

6504, 12946, 12990, 19052, 19764, 21490, 31638, 35604, 41300, 42364, 45212, 52528, 58104, 60034, 63400, 66662, 67858, 69880, 74090, 74824, 78542, 88844, 96256, 96346, 97818, 104584, 106970, 111122, 113120, 117540, 125384
Offset: 1

Views

Author

Zak Seidov, Mar 20 2017

Keywords

Examples

			a(1)=6504 because 6504 is the sum of 10 consecutive primes A000040(114..114+9)={619,631,641,643,647,653,659,661,673,677} and also
6504 is the sum of 10 consecutive semiprimes A001358(192..192+9)={629,633,634,635,649,655,662,667,669,671}.
Note that a(1) = 6504 = A283873(10).
		

Crossrefs

Programs

  • Maple
    N:= 10^6:
    P:= select(isprime, [$1..N]):
    S:= select(t -> numtheory:-bigomega(t)=2, [$1..N]):
    P10:= {seq(add(P[i],i=m..m+9),m=1..nops(P)-9)}:
    S10:= {seq(add(S[i],i=m..m+9),m=1..nops(S)-9)}:
    sort(convert(P10 intersect S10,list)); # Robert Israel, Mar 20 2017
  • Mathematica
    With[{nn = 12600}, Intersection[Total /@ Partition[Prime@ Range@ PrimePi@ nn, 10, 1], Total /@ Partition[Select[Range@ nn, PrimeOmega@ # == 2 &], 10, 1]]] (* Michael De Vlieger, Mar 20 2017 *)
  • PARI
    list(lim)=if(lim<6504,return([])); my(v=List(),u=v,P=primes(9),x=(lim+10*log(lim))\1,t); forprime(p=2,x\2, forprime(q=2,min(x\p,p), listput(u,p*q))); u=Set(u); while(u[#u]+1+(t=sum(i=0,8,u[#u-i]))<=lim, for(n=x+1,lim-t, if(issemi(n), u=concat(u,n); next(2))); break); for(i=1,#u-9, u[i]+=sum(j=1,9,u[i+j])); t=vecsum(P); forprime(p=P[#P]+1,, t+=p; if(t>lim, break); if(setsearch(u,t), listput(v,t)); t-=P[1]; P=concat(P[2..9], p)); Vec(v) \\ Charles R Greathouse IV, Mar 20 2017
Showing 1-1 of 1 results.