A283874 The Pierce expansion of the number Sum_{k>=1} 1/3^((2^k) - 1).
2, 3, 4, 9, 10, 81, 82, 6561, 6562, 43046721, 43046722, 1853020188851841, 1853020188851842, 3433683820292512484657849089281, 3433683820292512484657849089282, 11790184577738583171520872861412518665678211592275841109096961, 11790184577738583171520872861412518665678211592275841109096962
Offset: 0
Keywords
Examples
The Pierce expansion of 0.3708276874329189833 starts as 1/2 - 1/(2*3) + 1/(2*3*4) - 1/(2*3*4*9) + 1/(2*3*4*9*10) - 1/(2*3*4*9*10*81) + ...
Links
- Jeffrey Shallit, Simple continued fractions for some irrational numbers. J. Number Theory 11 (1979), no. 2, 209-217.
Programs
-
Maple
L:=[2]: for k from 0 to 6 do: L:=[op(L),3^(2^k),3^(2^k)+1]: od: print(L);
-
PARI
a(n) = if (n==0, 2, if (n%2, 3^(2^((n-1)/2)), 3^(2^((n-2)/2))+1)); \\ Michel Marcus, Mar 31 2017
Formula
a(0) = 2, a(2k+1) = 3^(2^k), a(2k+2) = 3^(2^k) + 1, k >= 0.
Comments