A283938 Interspersion of the signature sequence of tau^2, where tau = (1 + sqrt(5))/2 = golden ratio.
1, 4, 2, 10, 6, 3, 18, 13, 8, 5, 29, 22, 16, 11, 7, 43, 34, 26, 20, 14, 9, 59, 49, 39, 31, 24, 17, 12, 78, 66, 55, 45, 36, 28, 21, 15, 99, 86, 73, 62, 51, 41, 33, 25, 19, 123, 108, 94, 81, 69, 57, 47, 38, 30, 23, 150, 133, 117, 103, 89, 76, 64, 53, 44, 35
Offset: 1
Examples
Northwest corner: 1 4 10 18 29 43 59 78 99 123 2 6 13 22 34 49 66 86 108 133 3 8 16 26 39 55 73 94 117 143 5 11 20 31 45 62 81 103 127 154 7 14 24 36 51 69 89 112 137 165 9 17 28 41 57 76 97 121 147 176 From _Indranil Ghosh_, Mar 19 2017: (Start) Triangle formed when the array is read by antidiagonals: 1; 4, 2; 10, 6, 3; 18, 13, 8, 5; 29, 22, 16, 11, 7; 43, 34, 26, 20, 14, 9; 59, 49, 39, 31, 24, 17, 12; 78, 66, 55, 45, 36, 28, 21, 15; 99, 86, 73, 62, 51, 41, 33, 25, 19; 123, 108, 94, 81, 69, 57, 47, 38, 30, 23; ... (End)
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
Programs
-
Mathematica
r = GoldenRatio^2; z = 100; s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r]; u = Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A283968, row 1 of A283938 *) v = Table[s[n], {n, 0, z}] (* A283969, col 1 of A283938 *) w[i_, j_] := v[[i]] + u[[j]] + (i - 1)*(j - 1) - 1; Grid[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A283938, array *) Flatten[Table[w[k, n - k + 1], {n, 1, 20}, {k, 1, n}]] (* A283938, sequence *)
-
PARI
\\ This code produces the triangle mentioned in the example section r = (3 +sqrt(5))/2; z = 100; s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r)); p(n) = n + 1 + sum(k=0, n, floor((n - k)/r)); u = v = vector(z + 1); for(n=1, 101, (v[n] = s(n - 1))); for(n=1, 101, (u[n] = p(n - 1))); w(i,j) = v[i] + u[j] + (i - 1) * (j - 1) - 1; tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(n - k + 1, k),", ");); print(););}; tabl(10) \\ Indranil Ghosh, Mar 19 2017
Comments