A283999 a(n) = A005187(n) XOR A006068(n), where XOR is bitwise-xor (A003987).
0, 0, 0, 6, 0, 14, 14, 14, 0, 30, 30, 30, 30, 30, 18, 16, 0, 62, 62, 62, 62, 62, 50, 48, 62, 62, 34, 32, 34, 32, 44, 44, 0, 126, 126, 126, 126, 126, 114, 112, 126, 126, 98, 96, 98, 96, 108, 108, 126, 126, 66, 64, 66, 64, 76, 76, 66, 64, 92, 92, 92, 92, 92, 82, 0, 254, 254, 254, 254, 254, 242, 240, 254, 254, 226, 224, 226, 224, 236, 236, 254, 254, 194, 192, 194
Offset: 0
Links
Programs
-
Mathematica
Table[BitXor[Fold[BitXor, n, Quotient[n, 2^Range[BitLength@ n - 1]]], 2 n - DigitCount[2 n, 2, 1]], {n, 0, 84}] (* Michael De Vlieger, Mar 20 2017, after Jan Mangaldan at A006068 *)
-
PARI
b(n) = if(n<1, 0, b(n\2) + n%2); A(n) = 2*n - b(2*n); a(n) = if(n<2, n, 2*a(floor(n/2)) + (n%2 + a(floor(n/2))%2)%2); for(n=0, 110, print1(bitxor(A(n),a(n)),", ")) \\ Indranil Ghosh, Mar 25 2017
-
Python
def A(n): return 2*n - bin(2*n)[2:].count("1") def a(n): return n if n<2 else 2*a(n//2) + (n%2 + a(n//2)%2)%2 print([A(n)^a(n) for n in range(111)]) # Indranil Ghosh, Mar 25 2017
-
Scheme
(define (A283999 n) (A003987bi (A005187 n) (A006068 n))) ;; Where A003987bi implements bitwise-XOR (A003987).