cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284005 a(0) = 1, and for n > 1, a(n) = (1 + A000120(n))*a(floor(n/2)); also a(n) = A000005(A283477(n)).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 24, 16, 24, 36, 48, 54, 72, 96, 120, 32, 48, 72, 96, 108, 144, 192, 240, 162, 216, 288, 360, 384, 480, 600, 720, 64, 96, 144, 192, 216, 288, 384, 480, 324, 432, 576, 720, 768, 960, 1200, 1440, 486, 648, 864, 1080, 1152, 1440, 1800, 2160, 1536, 1920, 2400, 2880, 3000
Offset: 0

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Crossrefs

Similar recurrences: A124758, A243499, A329369, A341392.

Programs

  • Mathematica
    Table[DivisorSigma[0, #] &@ Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 71}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A284005(n) = numdiv(A283477(n)); \\ edited by Michel Marcus, May 01 2019, M. F. Hasler, Nov 10 2019
    
  • PARI
    a(n) = my(k=if(n,logint(n,2)),s=1); prod(i=0,k, s+=bittest(n,k-i)); \\ Kevin Ryde, Jan 20 2021
  • Scheme
    (define (A284005 n) (A000005 (A283477 n)))
    

Formula

a(n) = A000005(A283477(n)).
Conjecture: a(n) = 2*a(f(n)) + Sum_{k=0..floor(log_2(n))-1} a(f(n) + 2^k*(1 - T(n,k))) for n > 1 with a(0) = 1, a(1) = 2, f(n) = A053645(n), T(n,k) = floor(n/2^k) mod 2. - Mikhail Kurkov, Nov 10 2019
From Mikhail Kurkov, Aug 23 2021: (Start)
a(2n+1) = a(n) + a(2n) for n >= 0.
a(2n) = a(n) + a(2n - 2^A007814(n)) for n > 0 with a(0) = 1. (End)
Conjecture: a(n) = Sum_{k=0..n} (binomial(n, k) mod 2)*A329369(k). In other words, this sequence is modulo 2 binomial transform of A329369. - Mikhail Kurkov, Mar 10 2023
Conjecture: a(2^m*(2n+1)) = Sum_{k=0..m+1} binomial(m+1, k)*a(2^k*n) for m >= 0, n >= 0 with a(0) = 1. - Mikhail Kurkov, Apr 24 2023

Extensions

Made Mikhail Kurkov's Nov 10 2019 formula the new primary name of this sequence - Antti Karttunen, Dec 30 2020