cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284034 Primes p such that (p^2 - 3)/2 and (p^2 + 1)/2 are twin primes.

Original entry on oeis.org

3, 5, 11, 19, 29, 79, 101, 349, 409, 449, 521, 569, 571, 661, 739, 991, 1091, 1129, 1181, 1459, 1489, 1531, 1901, 2269, 2281, 2341, 2351, 2389, 2549, 2659, 2671, 2719, 2729, 2731, 3109, 4049, 4349, 5279, 5431, 5471, 5531, 5591, 5669, 6329, 6359, 6871, 7559, 7741
Offset: 1

Views

Author

Giuseppe Coppoletta, Mar 19 2017

Keywords

Comments

Primes which correspond to the short leg of an integral right triangle whose hypotenuse is part of a twin prime pair.
Each term p of the sequence must be part of a Pythagorean triple of the form {p, (p^2 - 1)/2, (p^2 + 1)/2} corresponding to {a(n), A284035(n) - 1, A284035(n)}.

Examples

			The prime p = 79 is in the sequence because (p^2-3)/2 = 3119 and (p^2+1)/2 = 3121 are twin primes. Remark that {79, 3120, 3121} is a Pythagorean triple.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^3], Function[p, Times @@ Boole@ Map[PrimeQ[(p^2 + #)/2 ] &, {-3, 1}] == 1]] (* Michael De Vlieger, Mar 20 2017 *)
    Select[Prime[Range[1000]],AllTrue[{(#^2-3)/2,(#^2+1)/2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 04 2017 *)
  • PARI
    isok(p) = isprime(p) && isprime((p^2-3)/2) && isprime((p^2+1)/2); \\ Michel Marcus, Mar 31 2017
  • Sage
    [p for p in prime_range(10000) if is_prime((p^2-3)//2) and is_prime((p^2+1)//2)]