A284037 Primes p such that p-1 and p+1 have two distinct prime factors.
11, 13, 19, 23, 37, 47, 53, 73, 97, 107, 163, 193, 383, 487, 577, 863, 1153, 2593, 2917, 4373, 8747, 995327, 1492993, 1990657, 5308417, 28311553, 86093443, 6879707137, 1761205026817, 2348273369087, 5566277615617, 7421703487487, 21422803359743, 79164837199873
Offset: 1
Keywords
Examples
7 is not a term because n + 1 = 8 has only one prime factor. 23 is a term because it is prime and n - 1 = 22 has two distinct prime factors (2, 11) and n + 1 = 24 has two distinct prime factors (2, 3). 43 is not a term because n - 1 = 42 has three distinct prime factors (2, 3, 7).
Links
- Robert Israel, Table of n, a(n) for n = 1..51 (all terms < 10^75)
Crossrefs
Programs
-
Maple
N:= 10^20: # To get all terms <= N Res:= {}: for i from 1 to ilog2(N) do for j from 1 to floor(log[3](N/2^i)) do q:= 2^i*3^j; if isprime(q-1) and nops(numtheory:-factorset((q-2)/2^padic:-ordp(q-2,2)))=1 then Res:= Res union {q-1} fi; if isprime(q+1) and nops(numtheory:-factorset((q+2)/2^padic:-ordp(q+2,2)))=1 then Res:= Res union {q+1} fi od od: sort(convert(Res,list)); # Robert Israel, Apr 16 2017
-
Mathematica
mx = 10^30; ok[t_] := PrimeQ[t] && PrimeNu[t-1]==2==PrimeNu[t+1]; Sort@ Reap[Do[ w = 2^i 3^j; Sow /@ Select[ w+ {1,-1}, ok], {i, Log2@ mx}, {j, 1, Log[3, mx/2^i]}]][[2, 1]] (* terms up to mx, Giovanni Resta, Mar 29 2017 *)
-
PARI
isok(n) = isprime(n) && (omega(n-1)==2) && (omega(n+1)==2); \\ Michel Marcus, Apr 17 2017
-
Sage
omega=sloane.A001221; [n for n in prime_range(10^6) if 2==omega(n-1)==omega(n+1)]
-
Sage
sorted([2^i*3^j+k for i in (1..40) for j in (1..20) for k in (-1,1) if is_prime(2^i*3^j+k) and sloane.A001221(2^i*3^j+2*k)==2])
Extensions
a(33)-a(34) from Giovanni Resta, Mar 29 2017
Comments