cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284037 Primes p such that p-1 and p+1 have two distinct prime factors.

Original entry on oeis.org

11, 13, 19, 23, 37, 47, 53, 73, 97, 107, 163, 193, 383, 487, 577, 863, 1153, 2593, 2917, 4373, 8747, 995327, 1492993, 1990657, 5308417, 28311553, 86093443, 6879707137, 1761205026817, 2348273369087, 5566277615617, 7421703487487, 21422803359743, 79164837199873
Offset: 1

Views

Author

Giuseppe Coppoletta, Mar 28 2017

Keywords

Comments

Either p-1 or p+1 must be of the form 2^i * 3^j, since among three consecutive numbers exactly one is a multiple of 3. - Giovanni Resta, Mar 29 2017
Subsequence of A219528. See the previous comment. - Jason Yuen, Mar 08 2025

Examples

			7 is not a term because n + 1 = 8 has only one prime factor.
23 is a term because it is prime and n - 1 = 22 has two distinct prime factors (2, 11) and n + 1 = 24 has two distinct prime factors (2, 3).
43 is not a term because n - 1 = 42 has three distinct prime factors (2, 3, 7).
		

Crossrefs

Programs

  • Maple
    N:= 10^20: # To get all terms <= N
    Res:= {}:
    for i from 1 to ilog2(N) do
      for j from 1 to floor(log[3](N/2^i)) do
        q:= 2^i*3^j;
        if isprime(q-1) and nops(numtheory:-factorset((q-2)/2^padic:-ordp(q-2,2)))=1 then Res:= Res union {q-1} fi;
        if isprime(q+1) and nops(numtheory:-factorset((q+2)/2^padic:-ordp(q+2,2)))=1 then Res:= Res union {q+1} fi
    od od:
    sort(convert(Res,list)); # Robert Israel, Apr 16 2017
  • Mathematica
    mx = 10^30; ok[t_] := PrimeQ[t] && PrimeNu[t-1]==2==PrimeNu[t+1]; Sort@ Reap[Do[ w = 2^i 3^j; Sow /@ Select[ w+ {1,-1}, ok], {i, Log2@ mx}, {j, 1, Log[3, mx/2^i]}]][[2, 1]] (* terms up to mx, Giovanni Resta, Mar 29 2017 *)
  • PARI
    isok(n) = isprime(n) && (omega(n-1)==2) && (omega(n+1)==2); \\ Michel Marcus, Apr 17 2017
  • Sage
    omega=sloane.A001221; [n for n in prime_range(10^6) if 2==omega(n-1)==omega(n+1)]
    
  • Sage
    sorted([2^i*3^j+k for i in (1..40) for j in (1..20) for k in (-1,1) if is_prime(2^i*3^j+k) and sloane.A001221(2^i*3^j+2*k)==2])
    

Formula

A001221(a(n)) = 1 and A001221(a(n) - 1) = A001221(a(n) + 1) = 2.

Extensions

a(33)-a(34) from Giovanni Resta, Mar 29 2017