cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A296057 Denominators of Harary index for the n-permutation star graph.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 11, 143, 13, 13, 17, 19, 323, 323, 437, 437, 23, 1, 667, 20677, 899, 31, 899, 33263, 33263, 33263, 47027, 2022161, 65231, 65231, 3065857, 3065857, 3065857, 3065857, 4391633, 4391633, 4391633, 4391633, 6319667, 385499687, 8965109, 8965109
Offset: 1

Views

Author

Andrew Howroyd, Dec 09 2017

Keywords

Crossrefs

Cf. A296190 (numerators), A007799, A284039.

Programs

  • Mathematica
    A007799[n_, i_] := Sum[Binomial[n - 1, k] Binomial[n - 1 - k, t] StirlingS1[k + 1, i - k + 1 - 2 t] (-1)^(i + 2 - t), {k, 0, Min[n - 1, i + 1]}, {t, Max[0, Ceiling[(i - 2 k)/2]], Min[n - 1 - k, Floor[(i + 1 - k)/2]]}];
    Table[n! Sum[A007799[n, k]/k, {k, Floor[3 (n - 1)/2]}]/2, {n, 20}] // Denominator (* Eric W. Weisstein, Dec 09 2017 *)

A296190 Numerators of Harary index for the n-permutation star graph.

Original entry on oeis.org

0, 1, 10, 123, 2202, 59040, 2287680, 121394000, 92649740400, 105538103163360, 1034297134668000, 134399089883282400, 27076064087538702720, 5451799851068349018240, 19300076847195336557164800, 4599598343095846092562560000, 1682634821690958905899793664000
Offset: 1

Views

Author

Eric W. Weisstein, Dec 07 2017

Keywords

Comments

The permutation star graph of order n is a vertex transitive graph with n! vertices and degree n-1. The graph can be constructed as the Cayley graph of the permutations of 1..n with the n-1 generators (1 2), (1 3)..(1 n) where (1 k) is the transposition of 1 and k. The number of nodes at distance k from a specified node is given by A007799(n,k). - Andrew Howroyd, Dec 09 2017

Crossrefs

Cf. A296057 (denominators), A007799, A284039.

Programs

  • Mathematica
    A007799[n_, i_] := Sum[Binomial[n - 1, k] Binomial[n - 1 - k, t] StirlingS1[k + 1, i - k + 1 - 2 t] (-1)^(i + 2 - t), {k, 0, Min[n - 1, i + 1]}, {t, Max[0, Ceiling[(i - 2 k)/2]], Min[n - 1 - k, Floor[(i + 1 - k)/2]]}];
    Table[n! Sum[A007799[n, k]/k, {k, Floor[3 (n - 1)/2]}]/2, {n, 20}] // Numerator (* Eric W. Weisstein, Dec 09 2017 *)

Formula

a(n)/A296057(n) = (n!/2) * Sum_{k=1..floor(3*(n-1)/2)} A007799(n, k)/k. - Andrew Howroyd, Dec 09 2017

Extensions

a(9)-a(17) from Andrew Howroyd, Dec 09 2017
Showing 1-2 of 2 results.