A284051 a(n) = A240751(n) mod n, where A240751(n) = the smallest k such that in the prime power factorization of k! there exists at least one exponent n.
0, 0, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 2, 2, 3, 5, 3, 2, 3, 4, 3, 4, 3, 4, 8, 3, 1, 2, 3, 2, 3, 6, 2, 2, 3, 1, 3, 4, 3, 2, 3, 2, 3, 3, 3, 4, 6, 7, 3, 4, 4, 4, 5, 4, 5, 4, 4, 5, 1, 2, 5, 2, 3, 5, 4, 2, 3, 6, 3, 4, 6, 7, 7, 2, 3, 2, 3, 4, 8, 3, 3, 4, 7
Offset: 1
Examples
A240751(5) = 12 so a(5) = 12 mod 5 == 2.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[k = 2; While[! MemberQ[FactorInteger[k!][[All, -1]], n], k++]; Mod[k, n], {n, 87}] (* Michael De Vlieger, Mar 24 2017 *)
-
PARI
a(n) = A240751(n)%n \\ (For computation of A240751(n), see A240751)