A284069 Numbers whose smallest decimal digit is 8.
8, 88, 89, 98, 888, 889, 898, 899, 988, 989, 998, 8888, 8889, 8898, 8899, 8988, 8989, 8998, 8999, 9888, 9889, 9898, 9899, 9988, 9989, 9998, 88888, 88889, 88898, 88899, 88988, 88989, 88998, 88999, 89888, 89889, 89898, 89899, 89988, 89989, 89998, 89999, 98888
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[n: n in [1..100000] | Minimum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 8]
-
Maple
F:= proc(d) local r; # to get all terms with d digits r:= 8*(10^d-1)/9; op(sort(convert(map(t -> r + add(10^(j-1),j=t), combinat:-powerset(d) minus {{$1..d}}),list))) end proc: map(F, [$1..5]); # Robert Israel, Apr 05 2017
-
Mathematica
Flatten@ Table[ Most[ FromDigits /@ Tuples[{8,9}, k]], {k,5}] (* Giovanni Resta, Mar 24 2017 *)
-
PARI
isok(n) = vecmin(digits(n)) == 8; \\ Michel Marcus, Mar 25 2017
-
Python
print([n for n in range(8, 10**6) if min(str(n))=='8']) # Indranil Ghosh, Apr 06 2017
Formula
From Robert Israel, Apr 05 2017: (Start)
a(2*j+2^(m+1)-m-3) = 10*a(j+2^m-m-1)+8 for j=1..2^m-1.
a(2*j+2^(m+1)-m-2) = 10*a(j+2^m-m-1)+9 for j=1..2^m-1.
a(2^(m+1)-m-2) = 10^m-2. (End)
Comments