cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284117 Sum of proper prime power divisors of n.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 4, 0, 0, 0, 28, 0, 9, 0, 4, 0, 0, 0, 12, 25, 0, 36, 4, 0, 0, 0, 60, 0, 0, 0, 13, 0, 0, 0, 12, 0, 0, 0, 4, 9, 0, 0, 28, 49, 25, 0, 4, 0, 36, 0, 12, 0, 0, 0, 4, 0, 0, 9, 124, 0, 0, 0, 4, 0, 0, 0, 21, 0, 0, 25, 4, 0, 0, 0, 28, 117, 0, 0, 4, 0, 0, 0, 12, 0, 9, 0, 4, 0, 0, 0, 60, 0, 49, 9, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 20 2017

Keywords

Examples

			a(8) = 12 because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 2 are proper prime powers {4, 8} therefore 4 + 8 = 12.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(t[1]*(t[1]^t[2]-t[1])/(t[1]-1), t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Mar 31 2017
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k] && PrimeOmega[k] > 1] k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Total[Select[Divisors[n], PrimePowerQ[#1] && PrimeOmega[#1] > 1 &]], {n, 100}]
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p - 1; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    concat([0, 0, 0], Vec(sum(k=1, 100, (isprimepower(k) && bigomega(k)>1) * k * x^k/(1 - x^k)) + O(x^101))) \\ Indranil Ghosh, Mar 21 2017
    
  • PARI
    a(n) = sumdiv(n, d, d*(isprimepower(d) && !isprime(d))); \\ Michel Marcus, Apr 01 2017

Formula

G.f.: Sum_{p prime, k>=2} p^k*x^(p^k)/(1 - x^(p^k)).
a(n) = Sum_{d|n, d = p^k, p prime, k >= 2} d.
a(n) = 0 if n is a squarefree (A005117).
Additive with a(p^e) = (p^(e+1)-1)/(p-1) - p - 1. - Amiram Eldar, Jul 24 2024