A284118 Sum of nonprime squarefree divisors of n.
1, 1, 1, 1, 1, 7, 1, 1, 1, 11, 1, 7, 1, 15, 16, 1, 1, 7, 1, 11, 22, 23, 1, 7, 1, 27, 1, 15, 1, 62, 1, 1, 34, 35, 36, 7, 1, 39, 40, 11, 1, 84, 1, 23, 16, 47, 1, 7, 1, 11, 52, 27, 1, 7, 56, 15, 58, 59, 1, 62, 1, 63, 22, 1, 66, 128, 1, 35, 70, 130, 1, 7, 1, 75, 16, 39, 78, 150, 1, 11, 1, 83, 1, 84, 86, 87, 88, 23, 1, 62
Offset: 1
Keywords
Examples
a(30) = 62 because 30 has 8 divisors {1, 2, 3, 5, 6, 10, 15, 30} among which 5 are nonprime squarefree {1, 6, 10, 15, 30} therefore 1 + 6 + 10 + 15 + 30 = 62.
Links
Programs
-
Mathematica
nmax = 90; Rest[CoefficientList[Series[x/(1 - x) + Sum[Sign[PrimeNu[k] - 1] MoebiusMu[k]^2 k x^k/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x]] Table[Total[Select[Divisors[n], #1 == 1 || (SquareFreeQ[#1] && PrimeNu[#1] > 1) &]], {n, 90}]
-
PARI
Vec((x/(1 - x)) + sum(k=2, 90, sign(omega(k) - 1) * moebius(k)^2 * k * x^k/(1 - x^k)) + O(x^91)) \\ Indranil Ghosh, Mar 21 2017
-
Python
from sympy import divisors from sympy.ntheory.factor_ import core def a(n): return sum([i for i in divisors(n) if core(i)==i and isprime(i)==0]) # Indranil Ghosh, Mar 21 2017