cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284118 Sum of nonprime squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 1, 1, 11, 1, 7, 1, 15, 16, 1, 1, 7, 1, 11, 22, 23, 1, 7, 1, 27, 1, 15, 1, 62, 1, 1, 34, 35, 36, 7, 1, 39, 40, 11, 1, 84, 1, 23, 16, 47, 1, 7, 1, 11, 52, 27, 1, 7, 56, 15, 58, 59, 1, 62, 1, 63, 22, 1, 66, 128, 1, 35, 70, 130, 1, 7, 1, 75, 16, 39, 78, 150, 1, 11, 1, 83, 1, 84, 86, 87, 88, 23, 1, 62
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 20 2017

Keywords

Examples

			a(30) = 62 because 30 has 8 divisors {1, 2, 3, 5, 6, 10, 15, 30} among which 5 are nonprime squarefree {1, 6, 10, 15, 30} therefore 1 + 6 + 10 + 15 + 30 = 62.
		

Crossrefs

Programs

  • Mathematica
    nmax = 90; Rest[CoefficientList[Series[x/(1 - x) + Sum[Sign[PrimeNu[k] - 1] MoebiusMu[k]^2 k x^k/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x]]
    Table[Total[Select[Divisors[n], #1 == 1 || (SquareFreeQ[#1] && PrimeNu[#1] > 1) &]], {n, 90}]
  • PARI
    Vec((x/(1 - x)) + sum(k=2, 90, sign(omega(k) - 1) * moebius(k)^2 * k * x^k/(1 - x^k)) + O(x^91)) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    from sympy.ntheory.factor_ import core
    def a(n): return sum([i for i in divisors(n) if core(i)==i and isprime(i)==0]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: x/(1 - x) + Sum_{k>=2} sgn(omega(k)-1)*mu(k)^2*k*x^k/(1 - x^k), where omega(k) is the number of distinct primes dividing k (A001221) and mu(k) is the Moebius function (A008683).
a(n) = Sum_{d|n, d nonprime squarefree} d.
a(n) = 1 if n is a prime power.
a(n) = A048250(n) - A008472(n). - Amiram Eldar, Jun 05 2025