cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318674 Sum of squarefree divisors of n that have an even number of prime factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 1, 1, 11, 1, 7, 1, 15, 16, 1, 1, 7, 1, 11, 22, 23, 1, 7, 1, 27, 1, 15, 1, 32, 1, 1, 34, 35, 36, 7, 1, 39, 40, 11, 1, 42, 1, 23, 16, 47, 1, 7, 1, 11, 52, 27, 1, 7, 56, 15, 58, 59, 1, 32, 1, 63, 22, 1, 66, 62, 1, 35, 70, 60, 1, 7, 1, 75, 16, 39, 78, 72, 1, 11, 1, 83, 1, 42, 86, 87, 88, 23, 1, 32, 92, 47
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, MoebiusMu[#] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 06 2025 *)
  • PARI
    A318674(n) = sumdiv(n,d,(1==moebius(d))*d);

Formula

a(n) = Sum_{d|n} [A008683(d) > 0]*d.
a(n) = A048250(n) - A318675(n).
For all n >= 1, a(n) <= A318676(n).
a(n) = (A048250(n) + A023900(n))/2. - Amiram Eldar, Jun 06 2025

A290479 Product of nonprime squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 6, 1, 14, 15, 1, 1, 6, 1, 10, 21, 22, 1, 6, 1, 26, 1, 14, 1, 27000, 1, 1, 33, 34, 35, 6, 1, 38, 39, 10, 1, 74088, 1, 22, 15, 46, 1, 6, 1, 10, 51, 26, 1, 6, 55, 14, 57, 58, 1, 27000, 1, 62, 21, 1, 65, 287496, 1, 34, 69, 343000, 1, 6, 1, 74, 15, 38, 77, 474552, 1, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 03 2017

Keywords

Examples

			a(30) = 27000 because 30 has 8 divisors {1, 2, 3, 5, 6, 10, 15, 30} among which 5 are nonprime squarefree {1, 6, 10, 15, 30} and 1*6*10*15*30 = 27000.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[d, {d, Select[Divisors[n], !PrimeQ[#] && SquareFreeQ[#] &]}], {n, 80}]
    Table[Last[Select[Divisors[n], SquareFreeQ]]^(DivisorSigma[0, Last[Select[Divisors[n], SquareFreeQ]]]/2 - 1), {n, 80}]
  • PARI
    A290479(n) = if(1==n, n, my(r=factorback(factorint(n)[, 1])); (r^((numdiv(r)/2)-1))); \\ Antti Karttunen, Aug 06 2018

Formula

a(n) = A078599(n)/A007947(n).
a(n) = rad(n)^(d(rad(n))/2-1), where d() is the number of divisors of n (A000005) and rad() is the squarefree kernel of n (A007947).
a(n) = 1 if n is a prime power.

A358077 Sum of the nonprime divisors of n whose divisor complement is squarefree.

Original entry on oeis.org

1, 1, 1, 4, 1, 7, 1, 12, 9, 11, 1, 22, 1, 15, 16, 24, 1, 33, 1, 34, 22, 23, 1, 48, 25, 27, 36, 46, 1, 62, 1, 48, 34, 35, 36, 72, 1, 39, 40, 72, 1, 84, 1, 70, 69, 47, 1, 96, 49, 85, 52, 82, 1, 108, 56, 96, 58, 59, 1, 142, 1, 63, 93, 96, 66, 128, 1, 106, 70, 130, 1, 144, 1, 75
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 29 2022

Keywords

Examples

			a(8) = 12. The nonprime divisors of 8 whose divisor complements are squarefree are 4 and 8 and their sum is 12.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, ! PrimeQ[#] && SquareFreeQ[n/#] &]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (!isprime(d) && issquarefree(n/d), d)); \\ Michel Marcus, Oct 30 2022

Formula

a(n) = Sum_{d|n, nonprime d, n/d squarefree} d.
Showing 1-3 of 3 results.