cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284254 Largest divisor of n such that all its prime factors are greater than the square of smallest prime factor of n, a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 1, 1, 5, 1, 11, 1, 1, 1, 13, 1, 7, 1, 5, 1, 1, 11, 17, 1, 1, 1, 19, 13, 5, 1, 7, 1, 11, 1, 23, 1, 1, 1, 25, 17, 13, 1, 1, 1, 7, 19, 29, 1, 5, 1, 31, 1, 1, 1, 11, 1, 17, 23, 35, 1, 1, 1, 37, 1, 19, 1, 13, 1, 5, 1, 41, 1, 7, 1, 43, 29, 11, 1, 5, 1, 23, 31, 47, 1, 1, 1, 49, 11, 25, 1, 17, 1, 13, 1, 53, 1, 1, 1, 55
Offset: 1

Views

Author

Antti Karttunen, Mar 24 2017

Keywords

Examples

			For n = 15 = 3*5, no prime factor is larger than 3^2, thus a(15) = 1. In this case the largest divisor satisfying the condition has no prime factors at all.
For n = 50 = 2*5*5, the primes larger than 2^2 are 5 and 5, thus a(50) = 5*5 = 25.
		

Crossrefs

Cf. A251726 (gives the positions of ones after the initial a(1)=1).
Differs from related A284252 for the first time at n=50, where a(50) = 25, while A284252(50) = 5.

Programs

  • Mathematica
    Table[If[n == 1, 1, Function[d, Last[Select[Reverse@ First@ d, Times @@ Boole@ Map[# > Last[d]^2 &, FactorInteger[#][[All, 1]]] == 1 &] /. {} -> {1}]]@ {#, First@ Select[#, PrimeQ]} &@ Divisors@ n], {n, 108}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    A(n) = if(n<2, return(1), my(f=factor(n)[, 1]); for(i=2, #f, if(f[i]>f[1]^2, return(f[i]))); return(1));
    a(n) = if(A(n)==1, 1, A(n)*a(n/A(n)));
    for(n=1, 150, print1(a(n),", ")) \\ Indranil Ghosh, after David A. Corneth, Mar 24 2017
    
  • Python
    from sympy import primefactors
    def A(n):
         for i in primefactors(n):
             if i>min(primefactors(n))**2: return i
         return 1
    def a(n): return 1 if A(n) == 1 else A(n)*a(n//A(n))
    print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Mar 24 2017

Formula

If A284252(n) = 1, then a(n) = 1, otherwise A284252(n) * a(A284253(n)).
Other identities. For all n >= 1:
n / a(n) = A284255(n).
A020639(a(n)) = A284252(n).
A001221(a(n)) = A284258(n).
A001222(a(n)) = A284256(n).