A284257 a(n) = number of prime factors of n that are < the square of smallest prime factor of n (counted with multiplicity), a(1) = 0.
0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 2, 4, 1, 3, 1, 2, 2, 1, 1, 4, 2, 1, 3, 2, 1, 2, 1, 5, 1, 1, 2, 4, 1, 1, 1, 3, 1, 2, 1, 2, 3, 1, 1, 5, 2, 1, 1, 2, 1, 4, 2, 3, 1, 1, 1, 3, 1, 1, 3, 6, 2, 2, 1, 2, 1, 1, 1, 5, 1, 1, 3, 2, 2, 2, 1, 4, 4, 1, 1, 3, 2, 1, 1, 3, 1, 3, 2, 2, 1, 1, 2, 6, 1, 1, 2, 2, 1, 2, 1, 3, 3, 1, 1, 5, 1, 1, 1, 4, 1, 2, 2, 2, 2, 1, 2, 4
Offset: 1
Keywords
Examples
For n = 45 = 3*3*5, all prime factors 3, 3 and 5 are less than 3^2, thus a(45) = 3. For n = 120 = 2*2*2*3*5, the prime factors less than 2^2 are 2*2*2*3, thus a(120) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001
Programs
-
Mathematica
Table[If[n == 1, 0, Count[#, d_ /; d < First[#]^2] &@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ n]], {n, 120}] (* Michael De Vlieger, Mar 24 2017 *)
-
PARI
A(n) = if(n<2, return(1), my(f=factor(n)[, 1]); for(i=2, #f, if(f[i]>f[1]^2, return(f[i]))); return(1)); a(n) = if(A(n)==1, 1, A(n)*a(n/A(n))); for(n=1, 150, print1(bigomega(n/a(n)),", ")) \\ Indranil Ghosh, Mar 24 2017, after David A. Corneth
-
Python
from sympy import primefactors def Omega(n): return 0 if n==1 else Omega(n//min(primefactors(n))) + 1 def A(n): pf = primefactors(n) if pf: min_pf2 = min(pf)**2 for i in pf: if i > min_pf2: return i return 1 def a(n): return 1 if A(n)==1 else A(n)*a(n//A(n)) print([Omega(n//a(n)) for n in range(1, 151)]) # Indranil Ghosh, Mar 24 2017
-
Scheme
(define (A284257 n) (A001222 (A284255 n)))