A284259 a(n) = number of distinct prime factors of n that are < the square of smallest prime factor of n, a(1) = 0.
0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2
Offset: 1
Keywords
Examples
For n = 4 = 2*2, the prime factor 2 is less than 2^2, and it is counted only once, thus a(4) = 1. For n = 45 = 3*3*5, both prime factors 3 and 5 are less than 3^2, thus a(45) = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001
Crossrefs
Programs
-
Mathematica
Table[If[n == 1, 0, Count[#, d_ /; d < First[#]^2] &@ FactorInteger[n][[All, 1]]], {n, 120}] (* Michael De Vlieger, Mar 24 2017 *)
-
PARI
A(n) = if(n<2, return(1), my(f=factor(n)[, 1]); for(i=2, #f, if(f[i]>f[1]^2, return(f[i]))); return(1)); a(n) = if(A(n)==1, 1, A(n)*a(n/A(n))); for(n=1, 150, print1(omega(n/a(n)),", ")) \\ Indranil Ghosh, after David A. Corneth, Mar 24 2017
-
Python
from sympy import primefactors def omega(n): return len(primefactors(n)) def A(n): for i in primefactors(n): if i>min(primefactors(n))**2: return i return 1 def a(n): return 1 if A(n)==1 else A(n)*a(n//A(n)) print([omega(n//a(n)) for n in range(1, 151)]) # Indranil Ghosh, Mar 24 2017
-
Scheme
(define (A284259 n) (A001221 (A284255 n)))