A284286 Expansion of eta(q^2)^4 / eta(q)^8 in powers of q.
1, 8, 40, 160, 552, 1712, 4896, 13120, 33320, 80872, 188784, 425952, 932640, 1988080, 4137024, 8422848, 16810536, 32943760, 63482760, 120440608, 225217904, 415498496, 756920160, 1362645440, 2425895712, 4273590392, 7454092720, 12879684160, 22056267840
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Julia
# JacobiTheta4 is defined in A002448. A284286List(len) = JacobiTheta4(len, -4) A284286List(29) |> println # Peter Luschny, Mar 12 2018
-
Mathematica
eta = QPochhammer; CoefficientList[eta[q^2]^4/eta[q]^8 + O[q]^30, q] (* Jean-François Alcover, Feb 21 2021 *)