A284289 Number of partitions of n into prime power divisors of n (not including 1).
1, 0, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 7, 1, 2, 2, 10, 1, 7, 1, 10, 2, 2, 1, 34, 2, 2, 5, 13, 1, 21, 1, 36, 2, 2, 2, 72, 1, 2, 2, 73, 1, 28, 1, 19, 13, 2, 1, 249, 2, 10, 2, 22, 1, 50, 2, 127, 2, 2, 1, 419, 1, 2, 17, 202, 2, 42, 1, 28, 2, 43, 1, 1260, 1, 2, 13, 31, 2, 49, 1, 801, 23, 2, 1, 774, 2, 2, 2, 280, 1, 608
Offset: 0
Keywords
Examples
a(8) = 4 because 8 has 4 divisors {1, 2, 4, 8} among which 3 are prime powers {2, 4, 8} therefore we have [8], [4, 4], [4, 2, 2] and [2, 2, 2, 2].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Prime Power
- Index entries for related partition-counting sequences
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local b, l; l, b:= sort( [select(x-> nops(ifactors(x)[2])=1, divisors(n))[]]), proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i)))) end; b(n, nops(l)) end: seq(a(n), n=0..100); # Alois P. Heinz, Mar 30 2017
-
Mathematica
Table[d = Divisors[n]; Coefficient[Series[Product[1/(1 - Boole[PrimePowerQ[d[[k]]]] x^d[[k]]), {k, Length[d]}], {x, 0, n}], x, n], {n, 0, 90}] (* or *) a[0]=1; a[1]=0; a[n_] := Length@IntegerPartitions[n, All, Join @@ (#[[1]]^Range[#[[2]]] & /@ FactorInteger[n])]; a /@ Range[0, 90] (* Giovanni Resta, Mar 25 2017 *)
Formula
a(n) = [x^n] Product_{p^k|n, p prime, k >= 1} 1/(1 - x^(p^k)).
a(n) = 1 if n is a prime.
a(n) = 2 if n is a semiprime.