cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A284380 Numbers k with digits 5 and 7 only.

Original entry on oeis.org

5, 7, 55, 57, 75, 77, 555, 557, 575, 577, 755, 757, 775, 777, 5555, 5557, 5575, 5577, 5755, 5757, 5775, 5777, 7555, 7557, 7575, 7577, 7755, 7757, 7775, 7777, 55555, 55557, 55575, 55577, 55755, 55757, 55775, 55777, 57555, 57557, 57575, 57577, 57755, 57757
Offset: 1

Views

Author

Jaroslav Krizek, Mar 28 2017

Keywords

Crossrefs

Prime terms are in A020467.
Numbers n with digits 5 and k only for k = 0 - 4 and 6 - 9: A169964 (k = 0), A276037 (k = 1), A072961 (k = 2), A284379 (k = 3), A256290 (k = 4), A256291 (k = 6), this sequence (k = 7), A284381 (k = 8), A284382 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {5, 7}];
    
  • Mathematica
    Join @@ ((FromDigits /@ Tuples[{5, 7}, #]) & /@ Range@ 5) (* Giovanni Resta, Mar 28 2017 *)
  • Python
    from sympy.utilities.iterables import multiset_permutations
    def aupton(terms):
      n, digits, alst = 0, 1, []
      while len(alst) < terms:
        mpstr = "".join(d*digits for d in "57")
        for mp in multiset_permutations(mpstr, digits):
          alst.append(int("".join(mp)))
          if len(alst) == terms: break
        else: digits += 1
      return alst
    print(aupton(44)) # Michael S. Branicky, May 07 2021

A284381 Numbers k with digits 5 and 8 only.

Original entry on oeis.org

5, 8, 55, 58, 85, 88, 555, 558, 585, 588, 855, 858, 885, 888, 5555, 5558, 5585, 5588, 5855, 5858, 5885, 5888, 8555, 8558, 8585, 8588, 8855, 8858, 8885, 8888, 55555, 55558, 55585, 55588, 55855, 55858, 55885, 55888, 58555, 58558, 58585, 58588, 58855, 58858
Offset: 1

Views

Author

Jaroslav Krizek, Mar 28 2017

Keywords

Comments

All terms except the first are composite.

Crossrefs

Numbers n with digits 5 and k only for k = 0 - 4 and 6 - 9: A169964 (k = 0), A276037 (k = 1), A072961 (k = 2), A284379 (k = 3), A256290 (k = 4), A256291 (k = 6), A284380 (k = 7), this sequence (k = 8), A284382 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {5, 8}];
    
  • Mathematica
    Join @@ ((FromDigits /@ Tuples[{5, 8}, #]) & /@ Range@ 5) (* Giovanni Resta, Mar 28 2017 *)
  • Python
    def a(n): return int(bin(n+1)[3:].replace('0', '5').replace('1', '8'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 08 2021

Formula

a(n) = (A284380(n)+A284382(n))/2. - Robert Israel, Mar 28 2017

A284382 Numbers k with digits 5 and 9 only.

Original entry on oeis.org

5, 9, 55, 59, 95, 99, 555, 559, 595, 599, 955, 959, 995, 999, 5555, 5559, 5595, 5599, 5955, 5959, 5995, 5999, 9555, 9559, 9595, 9599, 9955, 9959, 9995, 9999, 55555, 55559, 55595, 55599, 55955, 55959, 55995, 55999, 59555, 59559, 59595, 59599, 59955, 59959
Offset: 1

Views

Author

Jaroslav Krizek, Mar 28 2017

Keywords

Comments

Prime terms are in A020468.

Crossrefs

Numbers n with digits 5 and k only for k = 0 - 4 and 6 - 9: A169964 (k = 0), A276037 (k = 1), A072961 (k = 2), A284379 (k = 3), A256290 (k = 4), A256291 (k = 6), A284380 (k = 7), A284381 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {5, 9}];
    
  • Mathematica
    Join @@ ((FromDigits /@ Tuples[{5, 9}, #]) & /@ Range@ 5) (* Giovanni Resta, Mar 28 2017 *)
  • Python
    def a(n): return int(bin(n+1)[3:].replace('0', '5').replace('1', '9'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 09 2021

A284963 Numbers with digits 3 and 8 only.

Original entry on oeis.org

3, 8, 33, 38, 83, 88, 333, 338, 383, 388, 833, 838, 883, 888, 3333, 3338, 3383, 3388, 3833, 3838, 3883, 3888, 8333, 8338, 8383, 8388, 8833, 8838, 8883, 8888, 33333, 33338, 33383, 33388, 33833, 33838, 33883, 33888, 38333, 38338, 38383, 38388, 38833, 38838
Offset: 1

Views

Author

Jaroslav Krizek, Apr 06 2017

Keywords

Crossrefs

Prime terms are in A020464.
Numbers with digits 3 and k only for k = 0 - 2 and 4 - 9: A169966 (k = 0), A032917 (k = 1), A032810 (k = 2), A032834 (k = 4), A284379 (k = 5), A284633 (k = 6), A143967 (k = 7), this sequence (k = 8), A284964 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {3, 8}]
  • Mathematica
    Table[FromDigits/@Tuples[{3,8},n],{n,5}]//Flatten (* Harvey P. Dale, Mar 23 2021 *)

A284964 Numbers with digits 3 and 9 only.

Original entry on oeis.org

3, 9, 33, 39, 93, 99, 333, 339, 393, 399, 933, 939, 993, 999, 3333, 3339, 3393, 3399, 3933, 3939, 3993, 3999, 9333, 9339, 9393, 9399, 9933, 9939, 9993, 9999, 33333, 33339, 33393, 33399, 33933, 33939, 33993, 33999, 39333, 39339, 39393, 39399, 39933, 39939
Offset: 1

Views

Author

Jaroslav Krizek, Apr 06 2017

Keywords

Comments

All terms > 3 are composite.

Crossrefs

Cf. Numbers with digits 3 and k only for k = 0 - 2 and 4 - 9: A169966 (k = 0), A032917 (k = 1), A032810 (k = 2), A032834 (k = 4), A284379 (k = 5), A284633 (k = 6), A143967 (k = 7), A284963 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {3, 9}]
  • Mathematica
    Table[FromDigits/@Tuples[{3,9},n],{n,5}]//Flatten (* Harvey P. Dale, Sep 20 2022 *)

Formula

a(n) = 3 * A032917(n).
Showing 1-5 of 5 results.