cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284449 Number of n X 1 0..1 arrays with the number of 1's king-move adjacent to some 0 one less than the number of 0's adjacent to some 1.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 12, 28, 56, 119, 236, 481, 950, 1902, 3752, 7450, 14684, 29032, 57192, 112850, 222308, 438359, 863808, 1703239, 3357766, 6622471, 13061980, 25772503, 50859826, 100399602, 198235896, 391523612, 773453896, 1528361734, 3020781528, 5971996960
Offset: 0

Views

Author

R. H. Hardin, Mar 27 2017

Keywords

Comments

Number of binary words of length n with exactly one occurrence of subword 101 more than occurrences of subword 010. a(5) = 6: 01101, 10101, 10110, 10111, 11011, 11101. - Alois P. Heinz, Apr 23 2018

Examples

			Both solutions for n=4
..0. .0
..1. .0
..0. .1
..0. .0
		

Crossrefs

Column 1 of A284455 and of A307796.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<6, [0$3, 1, 2, 6][n+1],
          ((n+2)*(5*n^4-98*n^3+661*n^2-1680*n+1164) *a(n-1)
           -4*(2*n^5-37*n^4+226*n^3-442*n^2-87*n+204) *a(n-2)
           -2*(3*n^4-63*n^3+376*n^2-468*n+264) *a(n-3)
           +2*(8*n^5-155*n^4+1060*n^3-3035*n^2+3738*n-1752) *a(n-4)
           -4*(5*n^5-101*n^4+750*n^3-2450*n^2+3312*n-1248) *a(n-5)
           +4*(2*n-9)*(n^4-16*n^3+85*n^2-150*n+48) *a(n-6)) /
           ((n+3)*(n^4-20*n^3+139*n^2-372*n+300)))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Apr 23 2018

Formula

Recursion: see Maple program. - Alois P. Heinz, Apr 23 2018