A284449 Number of n X 1 0..1 arrays with the number of 1's king-move adjacent to some 0 one less than the number of 0's adjacent to some 1.
0, 0, 0, 1, 2, 6, 12, 28, 56, 119, 236, 481, 950, 1902, 3752, 7450, 14684, 29032, 57192, 112850, 222308, 438359, 863808, 1703239, 3357766, 6622471, 13061980, 25772503, 50859826, 100399602, 198235896, 391523612, 773453896, 1528361734, 3020781528, 5971996960
Offset: 0
Keywords
Examples
Both solutions for n=4 ..0. .0 ..1. .0 ..0. .1 ..0. .0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3327 (first 210 terms from R. H. Hardin)
Programs
-
Maple
a:= proc(n) option remember; `if`(n<6, [0$3, 1, 2, 6][n+1], ((n+2)*(5*n^4-98*n^3+661*n^2-1680*n+1164) *a(n-1) -4*(2*n^5-37*n^4+226*n^3-442*n^2-87*n+204) *a(n-2) -2*(3*n^4-63*n^3+376*n^2-468*n+264) *a(n-3) +2*(8*n^5-155*n^4+1060*n^3-3035*n^2+3738*n-1752) *a(n-4) -4*(5*n^5-101*n^4+750*n^3-2450*n^2+3312*n-1248) *a(n-5) +4*(2*n-9)*(n^4-16*n^3+85*n^2-150*n+48) *a(n-6)) / ((n+3)*(n^4-20*n^3+139*n^2-372*n+300))) end: seq(a(n), n=0..35); # Alois P. Heinz, Apr 23 2018
Formula
Recursion: see Maple program. - Alois P. Heinz, Apr 23 2018
Comments