cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A285152 T(n,k) = Number of n X k 0..1 arrays with the number of 1s horizontally or antidiagonally adjacent to some 0 one less than the number of 0's adjacent to some 1.

Original entry on oeis.org

0, 0, 0, 1, 2, 0, 2, 14, 12, 0, 6, 58, 113, 56, 0, 12, 210, 820, 786, 236, 0, 28, 788, 5773, 11574, 5742, 950, 0, 56, 2960, 41620, 159060, 166624, 42176, 3752, 0, 119, 11168, 305641, 2284666, 4551741, 2446130, 314197, 14684, 0, 236, 42402, 2274080
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2017

Keywords

Comments

Table starts
.0.....0........1..........2.............6...............12.................28
.0.....2.......14.........58...........210..............788...............2960
.0....12......113........820..........5773............41620.............305641
.0....56......786......11574........159060..........2284666...........33371602
.0...236.....5742.....166624.......4551741........130177958.........3791298670
.0...950....42176....2446130.....133021570.......7586120602.......440991447842
.0..3752...314197...36367674....3943470769.....448765516394.....52105131287528
.0.14684..2359900..545774302..118107656722...26835088076336...6225574564196248
.0.57192.17852820.8250020936.3565079136422.1617833226931330.750114767208917980

Examples

			Some solutions for n=4, k=4
..1..1..1..1. .1..0..0..0. .1..1..0..0. .1..1..0..1. .0..1..1..1
..0..0..0..1. .0..1..1..0. .1..1..0..0. .0..0..1..1. .0..1..1..0
..0..0..1..0. .1..1..1..1. .1..0..0..0. .0..0..1..0. .1..0..0..1
..0..0..0..0. .1..1..1..1. .0..0..1..1. .0..1..1..0. .0..1..0..0
		

Crossrefs

Row 1 is A284449.

A285750 T(n,k) = Number of n X k 0..1 arrays with the number of 1's horizontally, diagonally or antidiagonally adjacent to some 0 one less than the number of 0's adjacent to some 1.

Original entry on oeis.org

0, 0, 0, 1, 4, 0, 2, 8, 14, 0, 6, 44, 105, 52, 0, 12, 150, 630, 550, 206, 0, 28, 540, 4850, 8544, 5105, 772, 0, 56, 2042, 31276, 119506, 125088, 30918, 2896, 0, 119, 7760, 250592, 1729212, 3640966, 1835412, 265920, 10996, 0, 236, 29654, 1727836
Offset: 1

Views

Author

R. H. Hardin, Apr 25 2017

Keywords

Comments

Table starts
.0.....0........1..........2.............6...............12.................28
.0.....4........8.........44...........150..............540...............2042
.0....14......105........630..........4850............31276.............250592
.0....52......550.......8544........119506..........1729212...........25450414
.0...206.....5105.....125088.......3640966.........99685406.........3020617824
.0...772....30918....1835412.....101515318.......5826888288.......341001631140
.0..2896...265920...27339964....3077883556.....345505561776.....40895629554933
.0.10996..1773432..410644956...90409954434...20683003285236...4828422171183992
.0.41862.14632372.6209001966.2751592992660.1247496214559062.584834466962677402

Examples

			Some solutions for n=4, k=4
..0..0..0..0. .0..1..1..1. .0..1..1..1. .0..0..0..1. .0..0..0..0
..1..0..1..0. .0..1..0..0. .1..0..0..0. .1..1..1..0. .1..0..1..1
..1..0..0..1. .1..0..0..1. .0..0..0..0. .0..1..0..1. .1..0..1..1
..1..1..0..0. .1..0..0..0. .1..0..0..0. .1..0..0..0. .0..1..0..0
		

Crossrefs

Column 2 is A284765.
Row 1 is A284449.

A284771 T(n,k) = Number of n X k 0..1 arrays with the number of 1's horizontally or vertically adjacent to some 0 one less than the number of 0's adjacent to some 1.

Original entry on oeis.org

0, 0, 0, 1, 4, 1, 2, 14, 14, 2, 6, 52, 119, 52, 6, 12, 206, 720, 720, 206, 12, 28, 772, 5637, 10120, 5637, 772, 28, 56, 2896, 38792, 145822, 145822, 38792, 2896, 56, 119, 10996, 298003, 2134812, 4219759, 2134812, 298003, 10996, 119, 236, 41862, 2180148
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2017

Keywords

Comments

Table starts
..0.....0.......1.........2............6.............12...............28
..0.....4......14........52..........206............772.............2896
..1....14.....119.......720.........5637..........38792...........298003
..2....52.....720.....10120.......145822........2134812.........31677488
..6...206....5637....145822......4219759......121021322.......3595841703
.12...772...38792...2134812....121021322.....7032604532.....415218866820
.28..2896..298003..31677488...3595841703...415218866820...48994677634459
.56.10996.2180148.474539092.107047691558.24791001439744.5840008221148574

Examples

			Some solutions for n=4, k=4
..0..0..1..0. .1..1..1..0. .0..0..1..1. .0..1..0..0. .0..0..0..1
..0..1..1..0. .1..0..0..0. .0..0..0..1. .0..1..1..0. .1..1..0..1
..0..1..0..1. .0..0..1..1. .0..1..1..0. .0..1..0..0. .0..0..0..0
..0..1..1..0. .0..1..1..1. .0..1..1..0. .1..0..1..1. .1..1..0..1
		

Crossrefs

Column 1 is A284449.

A285030 T(n,k) = Number of n X k 0..1 arrays with the number of 1's horizontally, antidiagonally or vertically adjacent to some 0 one less than the number of 0's adjacent to some 1.

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 2, 6, 6, 2, 6, 26, 97, 26, 6, 12, 104, 442, 442, 104, 12, 28, 402, 4892, 6460, 4892, 402, 28, 56, 1578, 26226, 96458, 96458, 26226, 1578, 56, 119, 6196, 256732, 1449814, 3708321, 1449814, 256732, 6196, 119, 236, 24310, 1544872, 22043878
Offset: 1

Views

Author

R. H. Hardin, Apr 08 2017

Keywords

Comments

Table starts
..0....0.......1.........2...........6.............12...............28
..0....2.......6........26.........104............402.............1578
..1....6......97.......442........4892..........26226...........256732
..2...26.....442......6460.......96458........1449814.........22043878
..6..104....4892.....96458.....3708321.......85715676.......3064900470
.12..402...26226...1449814....85715676.....5075612300.....305391845288
.28.1578..256732..22043878..3064900470...305391845288...40651048407879
.56.6196.1544872.336883696.78636441270.18488589657334.4417815478017558

Examples

			Some solutions for n=4, k=4
..1..0..0..1. .0..1..0..0. .1..0..1..0. .0..0..0..0. .1..1..1..1
..1..0..0..0. .0..1..1..1. .0..1..0..0. .1..1..1..0. .0..1..0..1
..0..1..1..0. .0..0..1..0. .1..0..0..0. .0..1..0..1. .0..0..0..0
..1..1..0..0. .1..1..0..0. .1..1..1..0. .1..0..1..1. .0..0..1..0
		

Crossrefs

Column 1 is A284449.

A307796 Number T(n,k) of binary words of length n such that k is the difference of numbers of occurrences of subword 101 and subword 010; triangle T(n,k), n>=0, -floor(n/3)<=k<=floor(n/3), read by rows.

Original entry on oeis.org

1, 2, 4, 1, 6, 1, 2, 12, 2, 6, 20, 6, 1, 12, 38, 12, 1, 3, 28, 66, 28, 3, 10, 56, 124, 56, 10, 1, 24, 119, 224, 119, 24, 1, 4, 60, 236, 424, 236, 60, 4, 15, 134, 481, 788, 481, 134, 15, 1, 42, 304, 950, 1502, 950, 304, 42, 1, 5, 114, 656, 1902, 2838, 1902, 656, 114, 5
Offset: 0

Views

Author

Alois P. Heinz, Apr 29 2019

Keywords

Examples

			T(8,2) = 10: 01101101, 10101101, 10110101, 10110110, 10110111, 10111011, 10111101, 11011011, 11011101, 11101101.
T(8,-2) = 10: 00010010, 00100010, 00100100, 01000010, 01000100, 01001000, 01001001, 01001010, 01010010, 10010010.
T(9,3)  = 1: 101101101.
T(9,-3) = 1: 010010010.
Triangle T(n,k) begins:
  :                      1                   ;
  :                      2                   ;
  :                      4                   ;
  :                1,    6,   1              ;
  :                2,   12,   2              ;
  :                6,   20,   6              ;
  :           1,  12,   38,  12,   1         ;
  :           3,  28,   66,  28,   3         ;
  :          10,  56,  124,  56,  10         ;
  :      1,  24, 119,  224, 119,  24,  1     ;
  :      4,  60, 236,  424, 236,  60,  4     ;
  :     15, 134, 481,  788, 481, 134, 15     ;
  :  1, 42, 304, 950, 1502, 950, 304, 42, 1  ;
		

Crossrefs

Columns k=0-2 give: A164146, A284449, A286209.
Row sums give A000079.
T(3n-4,n-2) gives A000217 for n >= 3.

Programs

  • Maple
    b:= proc(n, t, h) option remember; `if`(n=0, 1, expand(
          `if`(h=3, 1/x, 1)*b(n-1, [1, 3, 1][t], 2)+
          `if`(t=3, x, 1)*b(n-1, 2, [1, 3, 1][h])))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=-iquo(n, 3)..iquo(n, 3)))(b(n, 1$2)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, t_, h_] := b[n, t, h] = If[n == 0, 1, Expand[If[h == 3, 1/x, 1]* b[n-1, {1, 3, 1}[[t]], 2] + If[t == 3, x, 1]*b[n-1, 2, {1, 3, 1}[[h]]]]];
    T[n_] := Table[Coefficient[#, x, i], {i, -Quotient[n, 3], Quotient[n, 3]}]& @ b[n, 1, 1];
    Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 08 2019, after Alois P. Heinz *)

Formula

T(n,k) = T(n,-k).
Sum_{k = -floor(n/3)..floor(n/3)} T(n,k) * k^2/2 = A057711(n-2) for n > 1.

A303430 Number of binary words of length n with exactly twice as many occurrences of subword 101 as occurrences of subword 010.

Original entry on oeis.org

1, 2, 4, 6, 10, 17, 28, 49, 84, 148, 263, 472, 858, 1568, 2893, 5372, 10034, 18824, 35428, 66898, 126683, 240483, 457334, 870956, 1660850, 3171112, 6061596, 11597587, 22206775, 42551339, 81591256, 156553245, 300565760, 577360360, 1109601934, 2133499936
Offset: 0

Views

Author

Alois P. Heinz, Apr 23 2018

Keywords

Examples

			a(0) = 1: the empty word.
a(1) = 2: 0, 1.
a(2) = 4: 00, 01, 10, 11.
a(3) = 6: 000, 001, 011, 100, 110, 111.
a(4) = 10: 0000, 0001, 0011, 0110, 0111, 1000, 1001, 1100, 1110, 1111.
a(5) = 17: 00000, 00001, 00011, 00110, 00111, 01100, 01110, 01111, 10000, 10001, 10011, 10101, 11000, 11001, 11100, 11110, 11111.
		

Crossrefs

Column k=2 of A303696.

Programs

  • Maple
    b:= proc(n, t, h, c) option remember; `if`(abs(c)>2*n, 0,
         `if`(n=0, 1, b(n-1, [1, 3, 1][t], 2, c-`if`(h=3, 2, 0))
                    + b(n-1, 2, [1, 3, 1][h], c+`if`(t=3, 1, 0))))
        end:
    a:= n-> b(n, 1$2, 0):
    seq(a(n), n=0..50);
Showing 1-6 of 6 results.