A303696
Number A(n,k) of binary words of length n with k times as many occurrences of subword 101 as occurrences of subword 010; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 2, 4, 1, 2, 4, 7, 1, 2, 4, 6, 12, 1, 2, 4, 6, 12, 21, 1, 2, 4, 6, 10, 20, 37, 1, 2, 4, 6, 10, 17, 38, 65, 1, 2, 4, 6, 10, 16, 28, 66, 114, 1, 2, 4, 6, 10, 16, 26, 49, 124, 200, 1, 2, 4, 6, 10, 16, 26, 42, 84, 224, 351, 1, 2, 4, 6, 10, 16, 26, 42, 70, 148, 424, 616
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
4, 4, 4, 4, 4, 4, 4, ...
7, 6, 6, 6, 6, 6, 6, ...
12, 12, 10, 10, 10, 10, 10, ...
21, 20, 17, 16, 16, 16, 16, ...
37, 38, 28, 26, 26, 26, 26, ...
65, 66, 49, 42, 42, 42, 42, ...
114, 124, 84, 70, 68, 68, 68, ...
200, 224, 148, 116, 110, 110, 110, ...
351, 424, 263, 196, 178, 178, 178, ...
-
b:= proc(n, t, h, c, k) option remember; `if`(abs(c)>k*n, 0,
`if`(n=0, 1, b(n-1, [1, 3, 1][t], 2, c-`if`(h=3, k, 0), k)
+ b(n-1, 2, [1, 3, 1][h], c+`if`(t=3, 1, 0), k)))
end:
A:= (n, k)-> b(n, 1$2, 0, min(k, n)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, t_, h_, c_, k_] := b[n, t, h, c, k] = If[Abs[c] > k n, 0, If[n == 0, 1, b[n - 1, {1, 3, 1}[[t]], 2, c - If[h == 3, k, 0], k] + b[n - 1, 2, {1, 3, 1}[[h]], c + If[t == 3, 1, 0], k]]];
A[n_, k_] := b[n, 1, 1, 0, Min[k, n]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Mar 20 2020, from Maple *)
A164146
Number of binary strings of length n with equal numbers of 010 and 101 substrings.
Original entry on oeis.org
1, 2, 4, 6, 12, 20, 38, 66, 124, 224, 424, 788, 1502, 2838, 5438, 10386, 20004, 38508, 74516, 144264, 280216, 544736, 1061292, 2069596, 4042254, 7902294, 15466842, 30297422, 59404174, 116558270, 228876426, 449713994, 884199348, 1739434972, 3423770240, 6742430340
Offset: 0
a(5) = 20: 00000, 00001, 00011, 00101, 00110, 00111, 01011, 01100, 01110, 01111, 10000, 10001, 10011, 10100, 11000, 11001, 11010, 11100, 11110, 11111. - _Alois P. Heinz_, Apr 16 2015
-
CoefficientList[Series[-(4*x^4-2*x^3-2*x^2+x+Sqrt[(2*x-1)*(2*x^2-1)*(2*x^2-2*x+1)]) / ((x-1)*(2*x-1)*(2*x^2-1)),{x,0,33}],x] (* Stefano Spezia, Jul 31 2025 *)
A284449
Number of n X 1 0..1 arrays with the number of 1's king-move adjacent to some 0 one less than the number of 0's adjacent to some 1.
Original entry on oeis.org
0, 0, 0, 1, 2, 6, 12, 28, 56, 119, 236, 481, 950, 1902, 3752, 7450, 14684, 29032, 57192, 112850, 222308, 438359, 863808, 1703239, 3357766, 6622471, 13061980, 25772503, 50859826, 100399602, 198235896, 391523612, 773453896, 1528361734, 3020781528, 5971996960
Offset: 0
Both solutions for n=4
..0. .0
..1. .0
..0. .1
..0. .0
-
a:= proc(n) option remember; `if`(n<6, [0$3, 1, 2, 6][n+1],
((n+2)*(5*n^4-98*n^3+661*n^2-1680*n+1164) *a(n-1)
-4*(2*n^5-37*n^4+226*n^3-442*n^2-87*n+204) *a(n-2)
-2*(3*n^4-63*n^3+376*n^2-468*n+264) *a(n-3)
+2*(8*n^5-155*n^4+1060*n^3-3035*n^2+3738*n-1752) *a(n-4)
-4*(5*n^5-101*n^4+750*n^3-2450*n^2+3312*n-1248) *a(n-5)
+4*(2*n-9)*(n^4-16*n^3+85*n^2-150*n+48) *a(n-6)) /
((n+3)*(n^4-20*n^3+139*n^2-372*n+300)))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Apr 23 2018
A286209
Number of n X 1 0..1 arrays with the number of 1's king-move adjacent to some 0 two less than the number of 0's adjacent to some 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 3, 10, 24, 60, 134, 304, 656, 1420, 2996, 6312, 13112, 27167, 55825, 114412, 233282, 474563, 962159, 1947098, 3931288, 7925708, 15952866, 32072580, 64404708, 129213082, 259009006, 518818124, 1038549912, 2077775396, 4154785904, 8304424080
Offset: 0
All solutions for n=7
..0. .0. .0
..1. .0. .1
..0. .1. .0
..0. .0. .0
..0. .0. .1
..1. .1. .0
..0. .0. .0
-
b:= proc(n, t, h, c) option remember; `if`(abs(c-2)>n, 0, `if`(n=0, 1,
b(n-1, [1, 3, 1][t], 2, c-`if`(h=3, 1, 0))+
b(n-1, 2, [1, 3, 1][h], c+`if`(t=3, 1, 0))))
end:
a:= n-> b(n, 1$2, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Apr 29 2019
-
b[n_, t_, h_, c_] := b[n, t, h, c] = If[Abs[c - 2] > n, 0, If[n == 0, 1,
b[n - 1, {1, 3, 1}[[t]], 2, c - If[h == 3, 1, 0]] +
b[n - 1, 2, {1, 3, 1}[[h]], c + If[t == 3, 1, 0]]]];
a[n_] := b[n, 1, 1, 0];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 27 2022, after Alois P. Heinz *)
Showing 1-4 of 4 results.
Comments