A284457 Square array whose rows list numbers with the same squarefree kernel (A007947): Transpose of A284311.
2, 4, 3, 8, 9, 5, 16, 27, 25, 6, 32, 81, 125, 12, 7, 64, 243, 625, 18, 49, 10, 128, 729, 3125, 24, 343, 20, 11, 256, 2187, 15625, 36, 2401, 40, 121, 13, 512, 6561, 78125, 48, 16807, 50, 1331, 169, 14, 1024, 19683, 390625, 54, 117649, 80, 14641, 2197, 28, 15
Offset: 1
Examples
Array starts: 2 4 8 16 32 64 128 3 9 27 81 243 729 2187 5 25 125 625 3125 15625 78125 6 12 18 24 36 48 54 7 49 343 2401 16807 117649 823543 10 20 40 50 80 100 160 ... Row 6 is: T[1,6] = 2*5; T[2,6] = 2^2*5; T[3,6] = 2^3*5; T[4,6] = 2*5^2; T[5,6] = 2^4*5, etc.
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
Crossrefs
Programs
-
Mathematica
f[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sf}, sf = n + sgn; While[c < Abs@ k, While[! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[sgn < 0, sf--, sf++]; c++]; sf + If[sgn < 0, 1, -1]] (* after Robert G. Wilson v at A005117 *); T[n_, k_] := T[n, k] = Which[And[n == 1, k == 1], 2, k == 1, f@ T[n - 1, k], PrimeQ@ T[n, 1], T[n, 1]^k, True, Module[{j = T[n, k - 1]/T[n, 1] + 1}, While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten
-
PARI
A284457(m,n)={for(a=2,m^2+1,(core(a)!=a||m--)&&next;m=factor(a)[,1]; for(k=1,9e9,factor(k*a)[,1]==m&&!n--&&return(k*a)))} \\ M. F. Hasler, Mar 27 2017
-
Scheme
(define (A284457 n) (A284311bi (A004736 n) (A002260 n))) ;; For A284311bi, see A284311. - Antti Karttunen, Apr 17 2017
Formula
Extensions
Edited by M. F. Hasler, Mar 27 2017
Comments