cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284461 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 5, 111, 5127, 400593, 47311677, 7857786015, 1745000283087, 499180661754849, 178734707493557301, 78294815164675006479, 41186656484051421462615, 25619826402721039367943729, 18600984174200732870460447213, 15588291843672510150758754601407
Offset: 0

Views

Author

Alois P. Heinz, Mar 27 2017

Keywords

Crossrefs

Bisection of A284230 (even part).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n+1,
          (n+irem(n, 2))*b(n-1)+(n-1)*b(n-2))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..15);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          ((2*n+1)^2-2)*a(n-1)-(4*n-6)*n*a(n-2))
        end:
    seq(a(n), n=0..15);
  • Mathematica
    a[n_] := a[n] = If[n<2, 4n+1, ((2n+1)^2-2) a[n-1] - (4n-6) n a[n-2]];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 19 2017, after 2nd Maple program *)

Formula

a(n) = A284230(2n).
a(n) = Sum_{k=2n..n*(2n+3)} A284414(2n,k).