cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284463 Number of compositions (ordered partitions) of n into prime divisors of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 12, 1, 2, 2, 1, 1, 65, 1, 23, 2, 2, 1, 351, 1, 2, 1, 38, 1, 15778, 1, 1, 2, 2, 2, 10252, 1, 2, 2, 1601, 1, 302265, 1, 80, 750, 2, 1, 299426, 1, 13404, 2, 107, 1, 1618192, 2, 5031, 2, 2, 1, 707445067, 1, 2, 2398, 1, 2, 119762253, 1, 173, 2, 39614048, 1, 255418101, 1, 2, 154603
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2017

Keywords

Examples

			a(6) = 2 because 6 has 4 divisors {1, 2, 3, 6} among which 2 are primes {2, 3} therefore we have [3, 3] and [2, 2, 2].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local b, l;
          l, b:= numtheory[factorset](n),
          proc(m) option remember; `if`(m=0, 1,
             add(`if`(j>m, 0, b(m-j)), j=l))
          end; b(n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 28 2017
  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[PrimeQ[d[[k]]]] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 75}]
  • Python
    from sympy import divisors, isprime
    from sympy.core.cache import cacheit
    @cacheit
    def a(n):
        l=[x for x in divisors(n) if isprime(x)]
        @cacheit
        def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m)
        return b(n)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Aug 01 2017, after Maple code

Formula

a(n) = [x^n] 1/(1 - Sum_{p|n, p prime} x^p).
a(n) = 1 if n is a prime power > 1.
a(n) = 2 if n is a squarefree semiprime.