cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284464 Number of compositions (ordered partitions) of n into squarefree divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 25, 2, 34, 19, 129, 2, 1046, 2, 742, 450, 1597, 2, 44254, 2, 27517, 3321, 29967, 2, 1872757, 571, 200390, 18560, 854850, 2, 154004511, 2, 3524578, 226020, 9262157, 51886, 3353855285, 2, 63346598, 2044895, 1255304727, 2, 185493291001, 2, 1282451595, 345852035, 2972038875, 2, 6006303471178
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2017

Keywords

Examples

			a(4) = 5 because 4 has 3 divisors {1, 2, 4} among which 2 are squarefree {1, 2} therefore we have [2, 2], [2, 1, 1], [1, 2, 1], [1, 2, 2] and [1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local b, l;
          l, b:= select(issqrfree, divisors(n)),
          proc(m) option remember; `if`(m=0, 1,
             add(`if`(j>m, 0, b(m-j)), j=l))
          end; b(n)
        end:
    seq(a(n), n=0..50);   # Alois P. Heinz, Mar 30 2017
  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[MoebiusMu[d[[k]]]^2 x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 48}]
  • Python
    from sympy import divisors
    from sympy.ntheory.factor_ import core
    from sympy.core.cache import cacheit
    @cacheit
    def a(n):
        l=[x for x in divisors(n) if core(x)==x]
        @cacheit
        def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m)
        return b(n)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Aug 01 2017, after Maple code

Formula

a(n) = [x^n] 1/(1 - Sum_{d|n, |mu(d)| = 1} x^d), where mu(d) is the Moebius function (A008683).
a(n) = 2 if n is a prime.