A286851 Number of compositions (ordered partitions) of n into unitary divisors of n.
1, 1, 2, 2, 2, 2, 25, 2, 2, 2, 129, 2, 170, 2, 742, 450, 2, 2, 4603, 2, 1503, 3321, 29967, 2, 9278, 2, 200390, 2, 13460, 2, 154004511, 2, 2, 226020, 9262157, 51886, 127654, 2, 63346598, 2044895, 170354, 2, 185493291001, 2, 1304512, 567124, 2972038875, 2, 59489916, 2, 20367343494, 184947044, 14324735, 2
Offset: 0
Keywords
Examples
a(8) = 2 because 8 has 4 divisors {1, 2, 4, 8} among which 2 are unitary divisors {1, 8} therefore we have [8] and [1, 1, 1, 1, 1, 1, 1, 1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
- Eric Weisstein's World of Mathematics, Unitary Divisor
- Index entries for sequences related to compositions
Programs
-
Maple
a:= proc(n) option remember; local b, l; l, b:= select(x-> igcd(x, n/x)=1, numtheory[divisors](n)), proc(m) option remember; `if`(m=0, 1, add(`if`(j>m, 0, b(m-j)), j=l)) end; b(n) end: seq(a(n), n=0..60); # Alois P. Heinz, Aug 01 2017
-
Mathematica
Join[{1}, Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[GCD[n/d[[k]], d[[k]]] == 1] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 1, 53}]]
-
Python
from sympy import divisors, gcd from sympy.core.cache import cacheit @cacheit def a(n): l=[x for x in divisors(n) if gcd(x, n//x)==1] @cacheit def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m) return b(n) print([a(n) for n in range(61)]) # Indranil Ghosh, Aug 01 2017, after Maple code
Formula
a(n) = [x^n] 1/(1 - Sum_{d|n, gcd(d, n/d) = 1} x^d).
a(n) = 2 if n is a prime power (A246655).