cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A286851 Number of compositions (ordered partitions) of n into unitary divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 25, 2, 2, 2, 129, 2, 170, 2, 742, 450, 2, 2, 4603, 2, 1503, 3321, 29967, 2, 9278, 2, 200390, 2, 13460, 2, 154004511, 2, 2, 226020, 9262157, 51886, 127654, 2, 63346598, 2044895, 170354, 2, 185493291001, 2, 1304512, 567124, 2972038875, 2, 59489916, 2, 20367343494, 184947044, 14324735, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2017

Keywords

Examples

			a(8) = 2 because 8 has 4 divisors {1, 2, 4, 8} among which 2 are unitary divisors {1, 8} therefore we have [8] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local b, l; l, b:=
          select(x-> igcd(x, n/x)=1, numtheory[divisors](n)),
          proc(m) option remember; `if`(m=0, 1,
             add(`if`(j>m, 0, b(m-j)), j=l))
          end; b(n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 01 2017
  • Mathematica
    Join[{1}, Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[GCD[n/d[[k]], d[[k]]] == 1] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 1, 53}]]
  • Python
    from sympy import divisors, gcd
    from sympy.core.cache import cacheit
    @cacheit
    def a(n):
        l=[x for x in divisors(n) if gcd(x, n//x)==1]
        @cacheit
        def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m)
        return b(n)
    print([a(n) for n in range(61)]) # Indranil Ghosh, Aug 01 2017, after Maple code

Formula

a(n) = [x^n] 1/(1 - Sum_{d|n, gcd(d, n/d) = 1} x^d).
a(n) = 2 if n is a prime power (A246655).
Showing 1-1 of 1 results.