cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284477 Pairs of integers (x, y), such that x^2 + 1 and y^2 + 1, 1 < y < x, have the same distinct prime factors.

Original entry on oeis.org

7, 3, 18, 8, 117, 43, 239, 5, 378, 132, 843, 377, 2207, 987, 2943, 73, 4443, 53, 4662, 1568, 6072, 5118, 8307, 743, 8708, 2112, 9872, 2738, 31561, 4929, 103682, 46368, 271443, 121393, 853932, 76378, 1021693, 91383, 3539232, 41218, 3699356, 473654
Offset: 1

Views

Author

Michel Lagneau, Mar 27 2017

Keywords

Comments

The sequence appears to thin out quite abruptly; however, by solving the Diophantine equation x^2 + 1 = p (y^2 + 1) for a suitable prime p and selecting the solutions (x, y) for which p divides y^2 + 1, it is easy to generate larger pairs, such as (423222288438379883442890018716361, 66096216900526495715353522199871). - Giovanni Resta, Mar 27 2017
A very interesting property: the sequence contains a subsequence of pairs (Lucas numbers L(i), Fibonacci numbers F(i)) for i = 4, 6, 14, 16, 24, 36, ... These pairs are (L(4), F(4)), (L(6), F(6)), (L(14), F(14)), (L(16), F(16)), (L(24), F(24)), (L(26), F(26)), (L(34), F(34)), ... = (7, 3), (18, 8), (843, 377), (2207, 987), (103682, 46368), (271443, 121393), (12752043, 5702887), ... It seems that {i} = A090773(n) (numbers that are congruent to {4, 6} mod 10). - Michel Lagneau, Mar 28 2017
This is because L(i)^2+1 = 5*(F(i)^2+1) for even i, and 5 | F(i)^2 + 1 for i== 3,4,6,7 (mod 10). In fact (L(i), F(i)) for i in A090773 are the solutions of the generalized Pell equation x^2 + 1 = 5 (y^2 + 1) for which 5 | y^2 + 1. - Robert Israel, Apr 10 2017

Examples

			The pair (843, 377) is in the sequence because the prime factors of 843^2 + 1 and 377^2 + 1 are 2, 5, 61 and 233.
		

Crossrefs

Programs

  • Maple
    A:= NULL:
    for x from 2 to 10^5 do
      P:= numtheory:-factorset(x^2+1);
      if not assigned(R[P]) then R[P]:= x
      else A:= A, op(map(t -> (x,t), [R[P]]));
           R[P]:= R[P],x
      fi
    od:
    A; # Robert Israel, Apr 10 2017
  • Mathematica
    d[n_] := First /@ FactorInteger[n]; Flatten@ Reap[ Do[ dx = d[x^2+1]; Do[ If[ dx == d[y^2+1], Sow[{x, y}]], {y, x-1}], {x, 1, 10^4}]][[2, 1]]
  • PARI
    upto(n) = {my(l = List(), res=List()); for(i=1, n, f = factor(i^2+1)[, 1]; listput(l, [f, i])); listsort(l); for(i=1, n-1, if(l[i][1]==l[i+1][1], listput(res, [l[i+1][2], l[i][2]]))); listsort(res); res} \\ David A. Corneth, Mar 28 2017

Extensions

a(29)-a(34) from Giovanni Resta, Mar 27 2017
a(35)-a(42) from David A. Corneth, Mar 28 2017