A284477 Pairs of integers (x, y), such that x^2 + 1 and y^2 + 1, 1 < y < x, have the same distinct prime factors.
7, 3, 18, 8, 117, 43, 239, 5, 378, 132, 843, 377, 2207, 987, 2943, 73, 4443, 53, 4662, 1568, 6072, 5118, 8307, 743, 8708, 2112, 9872, 2738, 31561, 4929, 103682, 46368, 271443, 121393, 853932, 76378, 1021693, 91383, 3539232, 41218, 3699356, 473654
Offset: 1
Keywords
Examples
The pair (843, 377) is in the sequence because the prime factors of 843^2 + 1 and 377^2 + 1 are 2, 5, 61 and 233.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..68 (terms with x < 1.5*10^8)
Programs
-
Maple
A:= NULL: for x from 2 to 10^5 do P:= numtheory:-factorset(x^2+1); if not assigned(R[P]) then R[P]:= x else A:= A, op(map(t -> (x,t), [R[P]])); R[P]:= R[P],x fi od: A; # Robert Israel, Apr 10 2017
-
Mathematica
d[n_] := First /@ FactorInteger[n]; Flatten@ Reap[ Do[ dx = d[x^2+1]; Do[ If[ dx == d[y^2+1], Sow[{x, y}]], {y, x-1}], {x, 1, 10^4}]][[2, 1]]
-
PARI
upto(n) = {my(l = List(), res=List()); for(i=1, n, f = factor(i^2+1)[, 1]; listput(l, [f, i])); listsort(l); for(i=1, n-1, if(l[i][1]==l[i+1][1], listput(res, [l[i+1][2], l[i][2]]))); listsort(res); res} \\ David A. Corneth, Mar 28 2017
Extensions
a(29)-a(34) from Giovanni Resta, Mar 27 2017
a(35)-a(42) from David A. Corneth, Mar 28 2017
Comments