cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284531 Primes p such that 6p - 5 and 6p + 5 are consecutive primes.

Original entry on oeis.org

31, 41, 71, 97, 139, 193, 337, 349, 421, 487, 587, 619, 643, 701, 811, 827, 1021, 1051, 1093, 1217, 1249, 1259, 1471, 1571, 1721, 1747, 1861, 1949, 2087, 2131, 2383, 2521, 2549, 2591, 2957, 3023, 3083, 3209, 3529, 3613, 3779, 3833, 3947, 4283, 4409, 4451, 4481, 4483, 4567, 4591, 4733
Offset: 1

Views

Author

Zak Seidov, Mar 28 2017

Keywords

Comments

a(n + 1) = a(n) + 2 for n = 47, 386, 868, 1000, 1247, 1521, 1834, 2271, 2435, 2437, 2468, 2483, 2811, 2819, 2960, 3202, 3531, 3581, 5021, 5178, 5245, 5669, 6009, 6087, 6198, 6686, 7017, 7029, 7454, 7576, 7699, 8557, 8940, 9018, 10130, 10240, 10449, 10578, 10952, 11070, 11103, 11199, ...
E.g., a(42)=4481 and a(43)=4483.

Examples

			31*6 - 5 = 181 = A000040(42) and 31*6 + 5 = 191 = A000040(43).
		

Crossrefs

Subsequence of A127430. Cf. A000040.

Programs

  • Maple
    filter:= p -> isprime(p) and isprime(6*p-5) and isprime(6*p+5) and not isprime(6*p-1) and not isprime(6*p+1):
    select(filter, [seq(i,i=3..10000, 2)]); # Robert Israel, Apr 07 2017
  • Mathematica
    Select[Range[31,5000,2], PrimeQ[#] && PrimeQ[a = 6 # - 5] && NextPrime[a] == a + 10 &]
    cp6Q[n_]:=Module[{p1=6n-5},PrimeQ[p1]&&NextPrime[p1]==6n+5]; Select[ Prime[ Range[ 1000]],cp6Q] (* Harvey P. Dale, Jun 05 2017 *)