A284531 Primes p such that 6p - 5 and 6p + 5 are consecutive primes.
31, 41, 71, 97, 139, 193, 337, 349, 421, 487, 587, 619, 643, 701, 811, 827, 1021, 1051, 1093, 1217, 1249, 1259, 1471, 1571, 1721, 1747, 1861, 1949, 2087, 2131, 2383, 2521, 2549, 2591, 2957, 3023, 3083, 3209, 3529, 3613, 3779, 3833, 3947, 4283, 4409, 4451, 4481, 4483, 4567, 4591, 4733
Offset: 1
Keywords
Examples
31*6 - 5 = 181 = A000040(42) and 31*6 + 5 = 191 = A000040(43).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= p -> isprime(p) and isprime(6*p-5) and isprime(6*p+5) and not isprime(6*p-1) and not isprime(6*p+1): select(filter, [seq(i,i=3..10000, 2)]); # Robert Israel, Apr 07 2017
-
Mathematica
Select[Range[31,5000,2], PrimeQ[#] && PrimeQ[a = 6 # - 5] && NextPrime[a] == a + 10 &] cp6Q[n_]:=Module[{p1=6n-5},PrimeQ[p1]&&NextPrime[p1]==6n+5]; Select[ Prime[ Range[ 1000]],cp6Q] (* Harvey P. Dale, Jun 05 2017 *)
Comments