cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A284555 Positions of zeros in A284557.

Original entry on oeis.org

0, 3, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 24, 28, 30, 31, 33, 36, 40, 45, 48, 51, 56, 60, 62, 63, 66, 72, 77, 80, 83, 89, 90, 96, 99, 101, 102, 103, 107, 112, 115, 120, 124, 126, 127, 129, 132, 139, 144, 147, 153, 154, 160, 163, 165, 166, 167, 171, 178, 180, 187, 189, 192, 195, 197, 198, 199, 201, 202, 204, 206, 207
Offset: 0

Views

Author

Antti Karttunen, Apr 10 2017

Keywords

Comments

Indexing starts from zero, because a(0) = 0 is a special case in this list.

Crossrefs

Cf. A048717 (a subsequence).

A284270 Square array A(r,c) = A048720(A065621(r), c) mod r, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 3, 4, 4, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 2, 1, 0, 7, 0, 0, 2, 0, 1, 0, 2, 0, 5, 6, 0, 0, 0, 0, 0, 0, 4, 0, 7, 2, 9, 0, 0, 0, 0, 4, 0, 2, 0, 1, 6, 7, 4, 0, 0, 1, 0, 1, 4, 0, 0, 8, 4, 0, 8, 8, 0, 0, 0, 0, 4, 0, 4, 0, 5, 4, 3, 0, 3, 8, 0, 0, 2, 0, 2, 0, 6, 0, 7, 2, 0, 4, 11, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 10 2017

Keywords

Examples

			The top left 17 x 19 corner of the array:
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0
   1,  2,  0,  1,  0,  0,  0,  2,  0,  0,  1,  0,  2,  0,  0,  1,  2
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0
   3,  1,  3,  2,  2,  1,  0,  4,  1,  4,  2,  2,  1,  0,  0,  3,  1
   2,  4,  0,  2,  0,  0,  0,  4,  0,  0,  2,  0,  4,  0,  0,  2,  4
   4,  1,  1,  2,  4,  2,  0,  4,  6,  1,  6,  4,  1,  0,  0,  1,  5
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0
   7,  5,  7,  1,  8,  5,  7,  2,  2,  7,  2,  1,  1,  5,  0,  4,  6
   6,  2,  6,  4,  4,  2,  0,  8,  2,  8,  4,  4,  2,  0,  0,  6,  2
   9,  7,  0,  3,  0,  0,  5,  6,  0,  0,  8,  0,  1, 10,  0,  1,  0
   4,  8,  0,  4,  0,  0,  0,  8,  0,  0,  4,  0,  8,  0,  0,  4,  8
   8,  3, 11,  6,  0,  9,  3, 12,  7,  0,  8,  5, 12,  6,  0, 11,  0
   8,  2,  2,  4,  8,  4,  0,  8, 12,  2, 12,  8,  2,  0,  0,  2, 10
   4,  8,  8,  1,  5,  1,  1,  2,  4, 10,  8,  2,  4,  2,  0,  4,  6
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0
  15, 13, 15,  9,  7, 13, 15,  1, 16, 14, 16,  9,  7, 13, 15,  2,  2
  14, 10, 14,  2, 16, 10, 14,  4,  4, 14,  4,  2,  2, 10,  0,  8, 12
  17, 15, 13, 11,  7,  7,  0,  3,  0, 14,  6, 14, 16,  0, 13,  6,  3
		

Crossrefs

Cf. A048720, A065621, A115872, A277320, A284269 (transpose), A284273 (main diagonal), A284552 (column 1).
Row 3: A284557.

Programs

Formula

A(r,c) = A277320(r,c) mod r = A048720(A065621(r), c) mod r.

A284574 a(n) = A048724(n) mod 3.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 2, 2, 0, 2, 2, 2, 2, 1, 2, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Apr 10 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A048724(n) mod 3.

A284575 a(n) = A048725(n) mod 3.

Original entry on oeis.org

0, 2, 1, 0, 2, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 2, 2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2, 0, 2, 0, 0, 0, 0, 2, 1, 0, 2, 1, 1, 2, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 1, 0, 2, 2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 1, 0, 2, 2, 0, 0, 0, 2, 0, 2, 2, 2, 2, 2, 0, 2, 1, 0, 0, 0, 1, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Apr 10 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A048725(n) mod 3.
Showing 1-4 of 4 results.