cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A285108 a(n) = A001222(A284578(n)).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 0, 0, 1, 3, 1, 1, 3, 4, 1, 1, 2, 3, 2, 0, 0, 4, 0, 0, 2, 3, 3, 1, 2, 3, 0, 0, 6, 6, 1, 3, 3, 6, 1, 1, 5, 4, 3, 3, 4, 4, 1, 2, 4, 5, 3, 0, 0, 5, 0, 0, 3, 3, 3, 4, 4, 1, 0, 1, 6, 5, 0, 2, 7, 3, 0, 0, 6, 5, 4, 4, 4, 11, 1, 2, 9, 5, 0, 3, 3, 8, 1, 1, 7, 4, 3, 4, 8, 10, 3, 3, 11, 6, 3, 4, 9, 4, 1, 1, 5, 5, 3, 3, 5, 4, 1
Offset: 0

Views

Author

Antti Karttunen, Apr 11 2017

Keywords

Crossrefs

Programs

  • Scheme
    (define (A285108 n) (A001222 (A284578 n)))
    ;; A more practical version, needing only an implementation of A004198bi (bitwise-and, A004198) and memoization-macro definec:
    (define (A285108 n) (apply + (bitwise_and_of_exp_lists (A260443as_coeff_list n) (A260443as_coeff_list (+ 1 n)))))
    (define (bitwise_and_of_exp_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (bitwise_and_of_exp_lists nums2 nums1)) (else (map A004198bi nums1 (append nums2 (make-list (- len1 len2) 0)))))))
    (definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))
    (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))

Formula

a(n) = A001222(A284578(n)).
a(n) = A285106(n) - A285107(n).
Other identities. For all n >= 0:
A007306(1+n) = A285106(n) + a(n) = A285107(n) + 2*a(n).

A277324 Odd bisection of A260443 (the even terms): a(n) = A260443((2*n)+1).

Original entry on oeis.org

2, 6, 18, 30, 90, 270, 450, 210, 630, 6750, 20250, 9450, 15750, 47250, 22050, 2310, 6930, 330750, 3543750, 1653750, 4961250, 53156250, 24806250, 727650, 1212750, 57881250, 173643750, 18191250, 8489250, 25467750, 2668050, 30030, 90090, 40020750, 1910081250, 891371250, 9550406250, 455814843750, 212713593750
Offset: 0

Views

Author

Antti Karttunen, Oct 10 2016

Keywords

Comments

From David A. Corneth, Oct 22 2016: (Start)
The exponents of the prime factorization of a(n) are first nondecreasing, then nonincreasing.
The exponent of 2 in the prime factorization of a(n) is 1. (End)

Examples

			A method to find terms of this sequence, explained by an example to find a(7). To find k = a(7), we find k such that A048675(k) = 2*7+1 = 15. 7 has the binary partitions: {[7, 0, 0], [5, 1, 0], [3, 2, 0], [1, 3, 0], [3, 0, 1], [1, 1, 1]}. To each of those, we prepend a 1. This gives the binary partitions of 15 starting with a 1. For example, for the first we get [1, 7, 0, 0]. We see that only [1, 5, 1, 0], [1, 3, 2, 0] and [1, 1, 1, 1] start nondecreasing, then nonincreasing, so we only check those. These numbers will be the exponents in a prime factorization. [1, 5, 1, 0] corresponds to prime(1)^1 * prime(2)^5 * prime(3)^1 * prime(4)^0 = 2430. We find that [1, 1, 1, 1] gives k = 210 for which A048675(k) = 15 so a(7) = 210. - _David A. Corneth_, Oct 22 2016
		

Crossrefs

Cf. A277200 (same sequence sorted into ascending order).

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a[2 n + 1], {n, 0, 38}] (* Michael De Vlieger, Apr 05 2017 *)
  • Python
    from sympy import factorint, prime, primepi
    from operator import mul
    def a003961(n):
        F=factorint(n)
        return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F])
    def a260443(n): return n + 1 if n<2 else a003961(a260443(n//2)) if n%2==0 else a260443((n - 1)//2)*a260443((n + 1)//2)
    def a(n): return a260443(2*n + 1)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 21 2017

Formula

a(n) = A260443((2*n)+1).
a(0) = 2; for n >= 1, a(n) = A260443(n) * A260443(n+1).
Other identities. For all n >= 0:
A007949(a(n)) = A005811(n). [See comments in A125184.]
A156552(a(n)) = A277189(n), a(n) = A005940(1+A277189(n)).
A048675(a(n)) = 2n + 1. - David A. Corneth, Oct 22 2016
A001222(a(n)) = A007306(1+n).
A056169(a(n)) = A284267(n).
A275812(a(n)) = A284268(n).
A248663(a(n)) = A283975(n).
A000188(a(n)) = A283484(n).
A247503(a(n)) = A284563(n).
A248101(a(n)) = A284564(n).
A046523(a(n)) = A284573(n).
a(n) = A277198(n) * A284008(n).
a(n) = A284576(n) * A284578(n) = A284577(n) * A000290(A284578(n)).

Extensions

More linking formulas added by Antti Karttunen, Apr 16 2017

A059895 Table a(i,j) = product prime[k]^(Ei[k] AND Ej[k]) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; AND is the bitwise operation on binary representation of the exponents.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Analogous to GCD, with AND replacing MIN.

Examples

			The top left 18 X 18 corner of the array:
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1
1,  2,  1,  1,  1,  2,  1,  2,  1,  2,  1,  1,  1,  2,  1,  1,  1,  2
1,  1,  3,  1,  1,  3,  1,  1,  1,  1,  1,  3,  1,  1,  3,  1,  1,  1
1,  1,  1,  4,  1,  1,  1,  4,  1,  1,  1,  4,  1,  1,  1,  1,  1,  1
1,  1,  1,  1,  5,  1,  1,  1,  1,  5,  1,  1,  1,  1,  5,  1,  1,  1
1,  2,  3,  1,  1,  6,  1,  2,  1,  2,  1,  3,  1,  2,  3,  1,  1,  2
1,  1,  1,  1,  1,  1,  7,  1,  1,  1,  1,  1,  1,  7,  1,  1,  1,  1
1,  2,  1,  4,  1,  2,  1,  8,  1,  2,  1,  4,  1,  2,  1,  1,  1,  2
1,  1,  1,  1,  1,  1,  1,  1,  9,  1,  1,  1,  1,  1,  1,  1,  1,  9
1,  2,  1,  1,  5,  2,  1,  2,  1, 10,  1,  1,  1,  2,  5,  1,  1,  2
1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 11,  1,  1,  1,  1,  1,  1,  1
1,  1,  3,  4,  1,  3,  1,  4,  1,  1,  1, 12,  1,  1,  3,  1,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 13,  1,  1,  1,  1,  1
1,  2,  1,  1,  1,  2,  7,  2,  1,  2,  1,  1,  1, 14,  1,  1,  1,  2
1,  1,  3,  1,  5,  3,  1,  1,  1,  5,  1,  3,  1,  1, 15,  1,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 16,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 17,  1
1,  2,  1,  1,  1,  2,  1,  2,  9,  2,  1,  1,  1,  2,  1,  1,  1, 18
A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 AND 3)* 3^(3 AND 5) = 2^1*3^1 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Apr 11 2017: (Start)
A(x,y) = A059896(x,y) / A059897(x,y).
A(x,y) * A059896(x,y) = A(x,y)^2 * A059897(x,y) = x*y.
(End)

Extensions

Data section extended to 120 terms by Antti Karttunen, Apr 11 2017

A284576 a(n) = A059896(A260443(n), A260443(1+n)).

Original entry on oeis.org

2, 6, 6, 30, 90, 270, 30, 210, 630, 6750, 6750, 1890, 15750, 47250, 210, 2310, 6930, 47250, 47250, 330750, 992250, 425250, 47250, 103950, 173250, 2315250, 2315250, 519750, 8489250, 25467750, 2310, 30030, 90090, 519750, 25467750, 3638250, 1910081250, 13023281250, 1447031250, 1400726250, 4202178750, 104186250, 2604656250
Offset: 0

Views

Author

Antti Karttunen, Apr 11 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A059896(A260443(n), A260443(1+n)).
a(n) = A284577(n) * A284578(n).
a(n) = A277324(n) / A284578(n).

A284577 a(n) = A059897(A260443(n), A260443(1+n)).

Original entry on oeis.org

2, 6, 2, 30, 90, 270, 2, 210, 630, 6750, 2250, 378, 15750, 47250, 2, 2310, 6930, 6750, 630, 66150, 198450, 3402, 90, 14850, 24750, 92610, 30870, 14850, 8489250, 25467750, 2, 30030, 90090, 6750, 339570, 14850, 382016250, 372093750, 9843750, 1400726250, 4202178750, 3402, 198450, 20465156250, 7796250, 83531250, 90, 859950, 1433250, 1890
Offset: 0

Views

Author

Antti Karttunen, Apr 11 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A059897(A260443(n), A260443(1+n)).
a(n) = A277324(n) / A000290(A284578(n)).
A001222(a(n)) = A285107(n).
Showing 1-5 of 5 results.