cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284585 Expansion of Product_{k>=0} (1 - x^(6*k+1)) in powers of x.

Original entry on oeis.org

1, -1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, -1, 2, -1, 0, 0, 0, -1, 3, -2, 0, 0, 0, -1, 3, -3, 1, 0, 0, -1, 4, -4, 1, 0, 0, -1, 4, -5, 2, 0, 0, -1, 5, -7, 3, 0, 0, -1, 5, -8, 5, -1, 0, -1, 6, -10, 6, -1, 0, -1, 6, -12, 9, -2, 0, -1
Offset: 0

Views

Author

Seiichi Manyama, Mar 29 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(6*k+m)): this sequence (m=1), A284586 (m=5).
Cf. A280456.

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    V:= Vector(N+1):
    V[1]:= 1:
    for k from 0 to floor((N-1)/6) do
    V[6*k+2..N+1]:= V[6*k+2..N+1]+V[1..N-6*k]
    od:
    seq((-1)^n*V[n+1],n=0..N); # Robert Israel, Apr 09 2017
  • Mathematica
    CoefficientList[Series[Product[1 - x^(6*k+1), {k, 0, 79}], {x, 0, 79}], x] (* Indranil Ghosh, Mar 29 2017 *)

Formula

a(n) = -(1/n)*Sum_{k=1..n} A284098(k)*a(n-k), a(0) = 1.
a(n) = (-1)^n * A280456(n). - Robert Israel, Apr 09 2017