cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A359936 Expansion of Product_{k>=0} (1 - x^(k^2+1)) in powers of x.

Original entry on oeis.org

1, -1, -1, 1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, 1, -1, -2, 2, 1, -1, 0, 1, -1, -1, 1, -1, 2, 0, -2, 1, 1, -2, 0, 2, -1, 1, -2, 0, 2, -1, -1, 2, 1, -3, 0, 1, 1, -2, 0, 1, 0, 0, -1, 3, 0, -3, 0, 2, -2, 1, 1, -2, 2, -2, -2, 4, 2, -4, 1, 2, -3, -1, 1, 2, 1, -1, -3, 2
Offset: 0

Views

Author

Seiichi Manyama, Jan 19 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=100, x='x+O('x^N)); Vec(prod(k=0, sqrtint(N), 1-x^(k^2+1)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, sumdiv(j, d, issquare(d-1)*d)*v[i-j+1])/i); v;

Formula

a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} A359937(k) * a(n-k).

A357911 Expansion of Product_{k>=0} (1 - x^(11*k+1)) in powers of x.

Original entry on oeis.org

1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 3, -2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 3, -3, 1, 0, 0, 0, 0, 0, 0, 0, -1, 4, -4, 1, 0, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, Jan 17 2023

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(m*k+1)): A081362 (m=2), A284312 (m=3), A284313 (m=4), A284314 (m=5), A284585 (m=6), A284499 (m=7), this sequence (m=11).
Cf. A357912.

Programs

  • PARI
    my(N=100, x='x+O('x^N)); Vec(prod(k=0, N, 1-x^(11*k+1)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, sumdiv(j, d, (Mod(d, 11)==1)*d)*v[i-j+1])/i); v;

Formula

a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} A357912(k) * a(n-k).

A284586 Expansion of Product_{k>=0} (1 - x^(6*k+5)) in powers of x.

Original entry on oeis.org

1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 2, -1, 0, 0, 0, -1, 2, -1, 0, 0, 0, -1, 3, -1, 0, 0, 0, -2, 3, -1, 0, 0, 0, -3, 4, -1, 0, 0, 1, -4, 4, -1, 0, 0, 1, -5, 5, -1, 0, 0, 2, -7, 5, -1, 0, 0, 3, -8, 6, -1, 0, 0, 5
Offset: 0

Views

Author

Seiichi Manyama, Mar 29 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(6*k+m)): A284585 (m=1), this sequence (m=5).
Cf. A281244.

Programs

  • Mathematica
    CoefficientList[Series[Product[1 - x^(6*k+5), {k, 0, 80}], {x, 0, 80}], x] (* Indranil Ghosh, Mar 29 2017 *)

Formula

a(n) = -(1/n)*Sum_{k=1..n} A284104(k)*a(n-k), a(0) = 1.
Showing 1-3 of 3 results.