cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284647 Number of nonisomorphic unfoldings in an n-gonal Archimedean antiprism.

Original entry on oeis.org

0, 1, 6, 36, 231, 1540, 10440, 71253, 487578, 3339820, 22885995, 156848616, 1075018896, 7368190921, 50502074766, 346145696820, 2372516138895, 16261462918828, 111457712887128, 763942497430365, 5236139690949090, 35889035134544956, 245987105715037011
Offset: 0

Views

Author

Humberto Bortolossi, Mar 31 2017

Keywords

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [0, 1, 6, 36, 231][n+1],
           11*(a(n-1)-3*(a(n-2)-a(n-3))-a(n-4))+a(n-5))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 31 2017
  • Mathematica
    CoefficientList[Series[x(1 - 5x + 3x^2) / ((1 - x)*(1 - 7x + x^2)*(1 - 3x + x^2)), {x, 0, 25}], x] (* Indranil Ghosh, Mar 31 2017 *)
    LinearRecurrence[{11,-33,33,-11,1},{0,1,6,36,231},30] (* Harvey P. Dale, Jan 07 2021 *)
  • PARI
    concat(0, Vec(x*(1 - 5*x + 3*x^2) / ((1 - x)*(1 - 7*x + x^2)*(1 - 3*x + x^2)) + O(x^30))) \\ Colin Barker, Mar 31 2017

Formula

a(n) = (1/10)*( ((1 + sqrt(5))/2)^(4*n) + ((1 + sqrt(5))/2)^(-4*n) - 2) + ((3 + sqrt(5))^n - (3 - sqrt(5))^n )/(2^(n + 1)*sqrt(5)).
From Colin Barker, Mar 31 2017: (Start)
G.f.: x*(1 - 5*x + 3*x^2) / ((1 - x)*(1 - 7*x + x^2)*(1 - 3*x + x^2)).
a(n) = 11*a(n-1) - 33*a(n-2) + 33*a(n-3) - 11*a(n-4) - a(n-5) for n>4.
(End)
a(n) = (5*Fibonacci(2*n) + Lucas(4*n) - 2)/10. - Ehren Metcalfe, Apr 21 2018
a(n) = Fibonacci(2*n)*(1+Fibonacci(2*n))/2 - Rick Mabry, Apr 10 2021