A284670 Exponents of powers of 5 that contain all ten decimal digits.
19, 22, 26, 27, 28, 29, 31, 34, 35, 37, 39, 40, 41, 49, 50, 51, 52, 56, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104
Offset: 1
Examples
5^19 = 19073486328125, which contains two 1's, two 2's, two 3's, one 4, one 5, one 6, one 7, two 8's, one 9 and one 0, so 19 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[110], Union[IntegerDigits[5^#]] == Range[0, 9] &] (* Indranil Ghosh, Apr 01 2017 *)
-
PARI
isok(n) = #vecsort(digits(5^n),,8) == 10; \\ Michel Marcus, Apr 01 2017
-
Python
from sympy.ntheory.factor_ import digits r10 = set(range(10)) print([n for n in range(1, 111) if set(sorted(digits(5**n)[1:])) == r10]) # Indranil Ghosh, Apr 01 2017
Comments