cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284699 Number of dominating sets in the n-antiprism graph.

Original entry on oeis.org

3, 15, 57, 223, 863, 3333, 12883, 49791, 192441, 743775, 2874655, 11110405, 42941187, 165965647, 641449337, 2479171199, 9581878847, 37033506309, 143132741651, 553201243263, 2138096511097, 8263641389887, 31938581194175, 123441098248197, 477093977471363, 1843945546253839, 7126761892007865
Offset: 1

Views

Author

Eric W. Weisstein, Apr 01 2017

Keywords

Comments

Recurrence used to extrapolate sequence to a(1) and a(2).

Programs

  • Mathematica
    LinearRecurrence[{3, 3, 1, 1, 1}, {3, 15, 57, 223, 863, 3333, 12883}, 20]
    Table[RootSum[-1 - # - #^2 - 3 #^3 - 3 #^4 + #^5 &, #^n &], {n, 20}]
  • PARI
    Vec(x*(3 + 6*x + 3*x^2 + 4*x^3 + 5*x^4) / (1 - 3*x - 3*x^2 - x^3 - x^4 - x^5) + O(x^30)) \\ Colin Barker, Apr 01 2017

Formula

From Colin Barker, Apr 01 2017: (Start)
G.f.: x*(3 + 6*x + 3*x^2 + 4*x^3 + 5*x^4) / (1 - 3*x - 3*x^2 - x^3 - x^4 - x^5).
a(n) = 3*a(n-1) + 3*a(n-2) + a(n-3) + a(n-4) + a(n-5) for n>5.
(End)