A284721 Smallest odd prime that is relatively prime to 2n+1.
3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 11, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
f:= proc(n) local p; p:= 2; do p:= nextprime(p); if igcd(p,2*n+1)=1 then return p fi od end proc: map(f, [$0..100]); # Robert Israel, Dec 09 2024
-
Mathematica
a[n_] := Module[{p = 3}, While[Divisible[2*n + 1, p], p = NextPrime[p]]; p]; Array[a, 100, 0] (* Amiram Eldar, Dec 09 2023 *)
-
PARI
a(n) = my(p=3); while(gcd(2*n+1, p) != 1, p=nextprime(p+1)); p; \\ Michel Marcus, Apr 04 2017
Formula
a(n) = 3 unless n == 1 (mod 3).
For all n >= 2, a(n) < 3*log(2*n+1). Also, for all n >= 1, a(n) < 5*log(2*n+1). [Upper bound corrected by N. J. A. Sloane, Apr 15 2017. Thanks to Bob Selcoe for pointing out that the old bound failed at n=1.]
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * Sum_{k>=2} (prime(k) * (1/prime(k-1)# - 1/prime(k)#)) = 3.84010195463226942418..., where prime(k)# = A002110(k). - Amiram Eldar, Dec 09 2023
Comments