cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A284759 a(n) = (Sum_{i=1..n-1} i^(n-2)) mod n^3.

Original entry on oeis.org

0, 1, 3, 14, 100, 115, 196, 500, 189, 333, 847, 1022, 1352, 1671, 1920, 3432, 3757, 2937, 1444, 7730, 1092, 427, 4232, 8668, 15000, 13037, 19197, 20902, 1682, 17999, 16337, 27856, 32043, 31873, 16170, 14298, 47915, 5603, 12792, 8260, 16810, 18949, 51772, 64526
Offset: 1

Views

Author

Felix Fröhlich, Apr 02 2017

Keywords

Comments

Conjecture: For n > 1, a(n) = 0 if and only if n is a term of A088164, i.e., n is a Wolstenholme prime (cf. Mestrovic, 2012, Conjecture 2.10).

Crossrefs

Programs

  • Maple
    seq(add(i^(n-2),i=1..n-1) mod n^3, n=1..100);
  • Mathematica
    Table[Mod[Sum[i^(n - 2), {i, n - 1}], n^3], {n, 44}] (* Michael De Vlieger, Apr 02 2017 *)
  • PARI
    a(n) = lift(Mod(sum(i=1, n-1, i^(n-2)), n^3))
    
  • PARI
    a(n)=my(m=n^3,e=n-2); lift(sum(i=1,n-1, Mod(i,m)^e)) \\ Charles R Greathouse IV, Apr 07 2017

Formula

a(n) = A076015(n-1) modulo A000578(n).
Showing 1-1 of 1 results.