cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A284760 a(n) = Sum_{i=1..n-1}(i^(n-2)) mod n^4.

Original entry on oeis.org

0, 1, 3, 14, 100, 979, 196, 500, 3834, 1333, 2178, 1022, 16731, 12647, 42420, 23912, 23409, 26265, 15162, 79730, 84441, 21723, 28566, 160732, 280625, 329405, 137295, 569702, 74849, 71999, 463202, 715984, 247665, 31873, 1302420, 574170, 807710, 225091, 1377129
Offset: 1

Views

Author

Felix Fröhlich, Apr 02 2017

Keywords

Comments

Mestrovic conjectures that a(n) > 0 for all n > 1 (Conjecture 2.11).

Examples

			For n=5 the sum is 1^3 + 2^3 + 3^3 + 4^3 = 1 + 8 + 27 + 64 = 100; the modulus is 5^4 = 625. So a(5) = 100 mod 625 = 100. - _Peter Munn_, May 01 2017
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[Sum[i^(n - 2), {i, n - 1}], n^4], {n, 39}] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    a(n) = lift(Mod(sum(i=1, n-1, i^(n-2)), n^4))
    
  • PARI
    a(n)=my(m=n^4,e=n-2); lift(sum(i=1,n-1, Mod(i,m)^e)) \\ Charles R Greathouse IV, Apr 07 2017

Formula

a(n) = A076015(n-1) modulo n^4.
Showing 1-1 of 1 results.