cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284778 Number of self-avoiding planar walks of length n+1 starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

0, 1, 1, 4, 8, 22, 54, 142, 370, 983, 2627, 7086, 19238, 52561, 144377, 398518, 1104794, 3074809, 8588093, 24064642, 67630898, 190584766, 538412426, 1524554956, 4326119748, 12300296227, 35037658099, 99977847308, 285741659312, 817901027070, 2344475178110
Offset: 0

Views

Author

Alois P. Heinz, Apr 02 2017

Keywords

Comments

From Gus Wiseman, Nov 15 2022: (Start)
Conjecture: Also the number of topologically series-reduced ordered rooted trees with n + 3 vertices and more than one branch of the root. This would imply a(n) = A187306(n+1) - A005043(n+1). For example, the a(1) = 1 through a(5) = 22 trees are:
(ooo) (oooo) (ooooo) (oooooo) (ooooooo)
((oo)oo) ((oo)ooo) ((oo)oooo)
(o(oo)o) ((ooo)oo) ((ooo)ooo)
(oo(oo)) (o(oo)oo) ((oooo)oo)
(o(ooo)o) (o(oo)ooo)
(oo(oo)o) (o(ooo)oo)
(oo(ooo)) (o(oooo)o)
(ooo(oo)) (oo(oo)oo)
(oo(ooo)o)
(oo(oooo))
(ooo(oo)o)
(ooo(ooo))
(oooo(oo))
(((oo)o)oo)
((o(oo))oo)
((oo)(oo)o)
((oo)o(oo))
(o((oo)o)o)
(o(o(oo))o)
(o(oo)(oo))
(oo((oo)o))
(oo(o(oo)))
(End)

Crossrefs

First upper diagonal of A284414, A284652.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, (3-n)*n/2,
          ((n^2-n+3)*a(n-1)+(5*n-2)*n*a(n-2)+
           3*(n-1)*n*a(n-3))/((n+3)*(n-1)))
        end:
    seq(a(n), n=0..35);
  • Mathematica
    CoefficientList[Series[(1 - 2*x - x^2 - Sqrt[1 - 4*x + 2*x^2 + 4*x^3 - 3*x^4])/(2*(x + 1)*x^3), {x, 0, 50}], x] (* Indranil Ghosh, Apr 02 2017 *)
  • Maxima
    a(n):=if n=0 then 0 else sum(((k+1)^2*sum(binomial(i,n-1-2*k-i)*binomial(n-k,i),i,0,n-1-2*k))/(n-k),k,0,floor((n)/2)); /* Vladimir Kruchinin, Mar 20 2023 */

Formula

G.f.: (1-2*x-x^2-sqrt(1-4*x+2*x^2+4*x^3-3*x^4))/(2*(x+1)*x^3).
Recursion: see Maple program.
a(n) = A284414(n,n+1) = A284652(n,n+1).
a(n) ~ 3^(n+5/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 02 2017
a(n) = Sum_{k=0..floor(n/2)} (k+1)^2/(n-k)*Sum_{i=0..n-1-2*k} C(i,n-1-2*k-i)*C(n-k,i), n>0, a(0)=0. - Vladimir Kruchinin, Mar 20 2023