A284778 Number of self-avoiding planar walks of length n+1 starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.
0, 1, 1, 4, 8, 22, 54, 142, 370, 983, 2627, 7086, 19238, 52561, 144377, 398518, 1104794, 3074809, 8588093, 24064642, 67630898, 190584766, 538412426, 1524554956, 4326119748, 12300296227, 35037658099, 99977847308, 285741659312, 817901027070, 2344475178110
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2105
- Alois P. Heinz, Animation of a(6)=54 walks
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, (3-n)*n/2, ((n^2-n+3)*a(n-1)+(5*n-2)*n*a(n-2)+ 3*(n-1)*n*a(n-3))/((n+3)*(n-1))) end: seq(a(n), n=0..35);
-
Mathematica
CoefficientList[Series[(1 - 2*x - x^2 - Sqrt[1 - 4*x + 2*x^2 + 4*x^3 - 3*x^4])/(2*(x + 1)*x^3), {x, 0, 50}], x] (* Indranil Ghosh, Apr 02 2017 *)
-
Maxima
a(n):=if n=0 then 0 else sum(((k+1)^2*sum(binomial(i,n-1-2*k-i)*binomial(n-k,i),i,0,n-1-2*k))/(n-k),k,0,floor((n)/2)); /* Vladimir Kruchinin, Mar 20 2023 */
Formula
G.f.: (1-2*x-x^2-sqrt(1-4*x+2*x^2+4*x^3-3*x^4))/(2*(x+1)*x^3).
Recursion: see Maple program.
a(n) ~ 3^(n+5/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 02 2017
a(n) = Sum_{k=0..floor(n/2)} (k+1)^2/(n-k)*Sum_{i=0..n-1-2*k} C(i,n-1-2*k-i)*C(n-k,i), n>0, a(0)=0. - Vladimir Kruchinin, Mar 20 2023
Comments