cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284839 Number of compositions (ordered partitions) of n into prime power divisors of n (including 1).

Original entry on oeis.org

1, 1, 2, 2, 6, 2, 24, 2, 56, 20, 128, 2, 1490, 2, 741, 449, 5272, 2, 36901, 2, 81841, 3320, 29966, 2, 4135004, 572, 200389, 26426, 5452795, 2, 110187694, 2, 47350056, 226019, 9262156, 51885, 10783889706, 2, 63346597, 2044894, 14064551462, 2, 109570982403, 2, 35537376325, 470326038, 2972038874, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2017

Keywords

Examples

			a(4) = 6 because 4 has 3 divisors {1, 2, 4} and all are prime powers therefore we have [4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local d, b; d, b:= select(x->
          nops(factorset(x))<2, divisors(n)),
          proc(n) option remember; `if`(n=0, 1,
            add(`if`(j>n, 0, b(n-j)), j=d))
          end: b(n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Apr 15 2017
  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[1/(1 - x - Sum[Boole[PrimePowerQ[d[[k]]]] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 47}]

Formula

a(n) = [x^n] 1/(1 - x - Sum_{p^k|n, p prime, k>=1} x^(p^k)).
a(n) = 2 if n is a prime.