A284839 Number of compositions (ordered partitions) of n into prime power divisors of n (including 1).
1, 1, 2, 2, 6, 2, 24, 2, 56, 20, 128, 2, 1490, 2, 741, 449, 5272, 2, 36901, 2, 81841, 3320, 29966, 2, 4135004, 572, 200389, 26426, 5452795, 2, 110187694, 2, 47350056, 226019, 9262156, 51885, 10783889706, 2, 63346597, 2044894, 14064551462, 2, 109570982403, 2, 35537376325, 470326038, 2972038874, 2
Offset: 0
Keywords
Examples
a(4) = 6 because 4 has 3 divisors {1, 2, 4} and all are prime powers therefore we have [4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Prime Power
- Index entries for sequences related to compositions
Programs
-
Maple
with(numtheory): a:= proc(n) local d, b; d, b:= select(x-> nops(factorset(x))<2, divisors(n)), proc(n) option remember; `if`(n=0, 1, add(`if`(j>n, 0, b(n-j)), j=d)) end: b(n) end: seq(a(n), n=0..60); # Alois P. Heinz, Apr 15 2017
-
Mathematica
Table[d = Divisors[n]; Coefficient[Series[1/(1 - x - Sum[Boole[PrimePowerQ[d[[k]]]] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 47}]
Formula
a(n) = [x^n] 1/(1 - x - Sum_{p^k|n, p prime, k>=1} x^(p^k)).
a(n) = 2 if n is a prime.