cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284849 Number of zeros strictly inside the unit circle of the Bernoulli polynomial B(n,x).

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 5, 6, 6, 5, 5, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
Offset: 0

Views

Author

Michel Lagneau, May 09 2017

Keywords

Comments

The n-th Bernoulli polynomial is defined by the exponential generating function:
t*exp(x*t)/(exp(t)-1) = Sum_{n>=0} bernoulli(n,x)/n!*t^n.
The first few Bernoulli polynomials are:
B(0,x) = 1
B(1,x) = x - 1/2
B(2,x) = x^2 - x + 1/6
B(3,x) = x^3 - 3/2 x^2 + 1/2 x
B(4,x)= x^4 - 2x^3 + x^2 - 1/30
Conjecture: for n > 63, a(n) = 3 for n odd and a(n) = 4 otherwise. - Charles R Greathouse IV, May 09 2017

Examples

			a(6) = 4 because the zeros of B(6,x) = x^6 - 3x^5 + 5/2 x^4 - 1/2 x^2 + 1/42 are:
x1 = -0.2728865...-0.06497293...*i,
x2 = -0.2728865...+0.06497293...*i,
x3 =  0.2475407...,
x4 =  0.7524592...,
x5 =  1.272886...-.06497293...*i,
x6 =  1.272886...+.06497293...*i
with four roots x1, x2, x3 and x4 in the unit circle.
		

Crossrefs

Programs

  • Maple
    for n from 0 to 90 do:it:=0:
    y:=[fsolve(expand(bernoulli(n,x)),x,complex)]:for m from 1 to nops(y) do:if abs(y[m])<1 then it:=it+1:else fi:od: printf(`%d, `, it):od:
  • PARI
    a(n)=my(v=polroots(bernpol(n))); sum(i=1,#v,abs(v[i])<1) \\ Charles R Greathouse IV, May 09 2017

Formula

Conjectures from Colin Barker, Jan 22 2020: (Start)
G.f.: x*(1 + 2*x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 - x^12 - x^13 + x^14 - x^15 - x^16 - x^17 - x^18 - x^20 + x^22 - x^24 + x^26 - x^28 + x^30 - x^32) / ((1 - x)*(1 + x)).
a(n) = a(n-2) for n>33.
(End)