A284849 Number of zeros strictly inside the unit circle of the Bernoulli polynomial B(n,x).
0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 5, 6, 6, 5, 5, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
Offset: 0
Keywords
Examples
a(6) = 4 because the zeros of B(6,x) = x^6 - 3x^5 + 5/2 x^4 - 1/2 x^2 + 1/42 are: x1 = -0.2728865...-0.06497293...*i, x2 = -0.2728865...+0.06497293...*i, x3 = 0.2475407..., x4 = 0.7524592..., x5 = 1.272886...-.06497293...*i, x6 = 1.272886...+.06497293...*i with four roots x1, x2, x3 and x4 in the unit circle.
Links
- Eric Weisstein's World of Mathematics, Bernoulli Polynomial
Programs
-
Maple
for n from 0 to 90 do:it:=0: y:=[fsolve(expand(bernoulli(n,x)),x,complex)]:for m from 1 to nops(y) do:if abs(y[m])<1 then it:=it+1:else fi:od: printf(`%d, `, it):od:
-
PARI
a(n)=my(v=polroots(bernpol(n))); sum(i=1,#v,abs(v[i])<1) \\ Charles R Greathouse IV, May 09 2017
Formula
Conjectures from Colin Barker, Jan 22 2020: (Start)
G.f.: x*(1 + 2*x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 - x^12 - x^13 + x^14 - x^15 - x^16 - x^17 - x^18 - x^20 + x^22 - x^24 + x^26 - x^28 + x^30 - x^32) / ((1 - x)*(1 + x)).
a(n) = a(n-2) for n>33.
(End)
Comments