A284855 Array read by antidiagonals: T(n,k) = number of necklaces with n beads and k colors that are the same when turned over.
1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 9, 6, 1, 6, 15, 16, 18, 8, 1, 7, 21, 25, 40, 27, 12, 1, 8, 28, 36, 75, 64, 54, 16, 1, 9, 36, 49, 126, 125, 160, 81, 24, 1, 10, 45, 64, 196, 216, 375, 256, 162, 32, 1, 11, 55, 81, 288, 343, 756, 625, 640, 243, 48, 1
Offset: 1
Examples
Table starts: 1 2 3 4 5 6 7 8 9 10 ... 1 3 6 10 15 21 28 36 45 55 ... 1 4 9 16 25 36 49 64 81 100 ... 1 6 18 40 75 126 196 288 405 550 ... 1 8 27 64 125 216 343 512 729 1000 ... 1 12 54 160 375 756 1372 2304 3645 5500 ... 1 16 81 256 625 1296 2401 4096 6561 10000 ... 1 24 162 640 1875 4536 9604 18432 32805 55000 ... 1 32 243 1024 3125 7776 16807 32768 59049 100000 ... 1 48 486 2560 9375 27216 67228 147456 295245 550000 ... ... For n = 4 and k = 2, the palindromic necklaces are 0000, 0001, 0011, 0111, 0101, 1111 so T(4,2) = 6. Necklaces are only counted up to cyclic equivalence. For n = 4 and k = 2, using MacMahon's bijection, with B = 0 and W = 1, the corresponding Sommerville symmetrical cyclic compositions of n = 4 are as follows: 1+1+1+1, 1+1+2, 1+3, 4, 2+2 (with none for 1111). If we let B = 1 and W = 0, we get the corresponding symmetrical cyclic compositions of n=4: (none for 0000) 4, 1+3, 1+1+2, 2+2, 1+1+1+1. (All these cyclic compositions must viewed on a circle.) - _Petros Hadjicostas_, Sep 02 2018
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for the pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Christian G. Bower, Transforms (2).
- Petros Hadjicostas, Generalized colored circular palindromic compositions, Moscow Journal of Combinatorics and Number Theory, 9(2) (2020), 173-186.
- D. M. Y. Sommerville, On certain periodic properties of cyclic compositions of numbers, Proc. London Math. Soc. S2-7(1) (1909), 263-313.
Crossrefs
Programs
-
Mathematica
a[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2 + 1))/2, k^((n+1)/2)]; Table[a[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017, translated from PARI *)
-
PARI
a(n,k) = if(n % 2 == 0, (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2)); for(n=1, 10, for(k=1, 10, print1( a(n,k),", ");); print(););
Formula
T(2*n, k) = (k^(n+1) + k^n) / 2.
T(2*n + 1, k) = k^(n+1).
From Petros Hadjicostas, Sep 02 2018: (Start)
For fixed k >= 1, the k-th column (T(n, k): n >= 1) is the CPAL ("circular palindrome") transform of the sequence k, 0, 0, ...
G.f. of column k: Sum_{n>=1} T(n,k)*x^n = (1 + k*x)^2/(2*(1 - k*x^2)) - 1/2. (End)
Comments