cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284861 Triangle read by rows: T(n, k) = S2[3,1](n, k)*k! with the Sheffer triangle S2[3,1] = (exp(x), exp(3*x) -1) given in A282629.

Original entry on oeis.org

1, 1, 3, 1, 15, 18, 1, 63, 216, 162, 1, 255, 1890, 3564, 1944, 1, 1023, 14760, 52650, 68040, 29160, 1, 4095, 109458, 659340, 1516320, 1487160, 524880, 1, 16383, 790776, 7578522, 27624240, 46539360, 36741600, 11022480, 1, 65535, 5633730, 82902204, 450057384, 1158993360, 1535798880, 1014068160, 264539520
Offset: 0

Views

Author

Wolfdieter Lang, Apr 09 2017

Keywords

Comments

This is a generalization of triangle A131689(n, k) = Stirling2(n, k)*k!, because S2[3,1] is a generalization of the Stirling2 triangle written as S2[1,0].
This triangle appears in the o.g.f. G(3,1;n,x) of the powers {(1+3*m)^n}{m>=0} as G(3,1;n,x) = Sum{k>=0..n} T(n, k)*x^k / (1-x)^k.
This triangle is also related to the generalized row reversed Euler triangle rEu[3,1] with row polynomial rEu(3,1;n,x) = Sum_{m=0..n} rEu(3,1;n,m)*x^m with rEu(3,1;n,m) = Sum_{j=0..m} (-1)^(m-j)*binomial(n-j, m-j)*T(n, m). This follows from the above given o.g.f. of powers G(3,1;n,x) = rEu(3,1;n,x)/(1-x)^(n+1). The Euler triangle E[3,1] (row reversed rEu[3,1] is given in A225117. See a formula below.
The e.g.f. of the row polynomials R(3,1;n,x) = Sum_{m=0..n} T(n, m)*x^m follows from the e.g.f. of the row polynomials of the Sheffer triangle A282629. See the formula section.
The diagonal sequence is A032031(k) = k!*3^k.
The row sums give unsigned A151919, and the alternating row sums give A122803.
The first column k sequences divided by A032031(k) are A000012, A002450 (with a leading 0), A016223, A021874. For the e.g.f.s and o.g.f.s see below.

Examples

			The triangle T(n, k) begins
n\k 0     1      2       3        4        5        6        7 ...
0:  1
1:  1     3
2:  1    15     18
3:  1    63    216     162
4:  1   255   1890    3564     1944
5:  1  1023  14760   52650    68040    29160
6:  1  4095 109458  659340  1516320  1487160   524880
7:  1 16383 790776 7578522 27624240 46539360 36741600 11022480
...
row n=8: 1 65535 5633730 82902204 450057384 1158993360 1535798880 1014068160 264539520,
row n=9: 1 262143 39829320 879725610 6845572440 25294754520 50042059200 54561276000 30951123840 7142567040,
row n=10: 1 1048575 280378098 9155719980 99549149040 507399658920 1406104706160 2251231315200 2083248720000 1035672220800 214277011200.
------------------------------------------------------------------
T(2, 1) =  -1 + 4^2 = 15 = 2*A225117(2,2) + 1*A225117(2,1) = 2*1 + 1*13.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k, m] (-1)^(k - m) (1 + 3m)^n, {m, 0, k}], {n, 0, 10}, {k, 0, n}]// Flatten (* Indranil Ghosh, Apr 09 2017 *)
  • PARI
    for(n=0, 10, for(k=0, n, print1(sum(m=0, k, binomial(k, m) * (-1)^(k - m)*(1 + 3*m)^n),", "); ); print();) \\ Indranil Ghosh, Apr 09 2017
    
  • Python
    # Indranil Ghosh, Apr 09 2017
    from sympy import binomial
    for n in range(11):
        print([sum([binomial(k, m)*(-1)**(k - m)*(1 + 3*m)**n for m in range(k + 1)]) for k in range(n + 1)])

Formula

E.g.f. of the row polynomials R(n, x) (see a comment above) is exp(z)/(1 - x*(exp(3*z) - 1)). This is the e.g.f. for the triangle.
T(n, k) = Sum_{m=0..k} binomial(k, m)*(-1)^(k-m)*(1+ 3*m)^n, 0 <= k <= n.
T(n, k) = Sum_{m=0..k} binomial(n-m, k-m)*A225117(n,n-m), 0 <= k <= n.
Three term recurrence: T(n, k) = 0 if n < k, T(n,-1) = 0, T(0, 0) = 1, T(n, k) = 3*k*T(n-1, k-1) + (1+3*k)*T(n-1, k) for n >= 1. See A282629.
The column k sequence has e.g.f. exp(x)*(exp(3*x) - 1)^k (from the Sheffer property of A282629).
The o.g.f. is A032031(k)*x^k/Product_{j=0..k} (1 - (1+3*j)*x).
From Peter Bala, Jan 12 2018: (Start)
n-th row polynomial R(n,x) = (1 + 3*x) o (1 + 3*x) o ... o (1 + 3*x) (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See example E14 in the Bala link. Cf. A145901.
R(n,x) = Sum_{k = 0..n} binomial(n,k)*3^k*F(k,x) where F(k,x) is the Fubini polynomial of order k, the k-th row polynomial of A019538. (End)