A284870 Expansion of Sum_{i>=1} i*x^i/(1 - x) * Product_{j=1..i} 1/(1 - x^j).
0, 1, 4, 10, 22, 42, 77, 131, 217, 345, 537, 812, 1211, 1767, 2547, 3615, 5078, 7043, 9687, 13185, 17815, 23867, 31766, 41972, 55146, 71997, 93519, 120813, 155358, 198811, 253374, 321509, 406436, 511802, 642264, 803140, 1001154, 1243966, 1541167, 1903754, 2345300, 2881404, 3531195, 4316632, 5264444, 6405389
Offset: 0
Keywords
Examples
a(4) = 22 because we have 1 = 1, 2 = 2, 1 + 1 = 2, 3 = 3, 2 + 1 = 3, 1 + 1 + 1 = 3, 4 = 4, 3 + 1 = 4, 2 + 2 = 4, 2 + 1 + 1 = 4 and 1 + 1 + 1 + 1 = 4 therefore 1 + 1 + 2 + 1 + 2 + 3 + 1 + 2 + 2 + 3 + 4 = 22 (total number of parts) or 1 + 2 + 1 + 3 + 2 + 1 + 4 + 3 + 2 + 2 + 1 = 22 (sum of largest parts).
Links
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], b(n, i-1) +(p-> p+[0, p[1]])(b(n-i, min(n-i, i)))) end: a:= proc(n) a(n):= `if`(n<1, 0, a(n-1)+b(n$2)[2]) end: seq(a(n), n=0..45); # Alois P. Heinz, Feb 16 2021
-
Mathematica
nmax = 45; CoefficientList[Series[Sum[i x^i /(1 - x) Product[1/(1 - x^j), {j, 1, i}], {i, 1, nmax}], {x, 0, nmax}], x] nmax = 45; CoefficientList[Series[1/(1 - x) Sum[x^i /(1 - x^i), {i, 1, nmax}] Product[1/(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x] Accumulate[Table[Sum[DivisorSigma[0, k] PartitionsP[n - k], {k, 1, n}], {n, 0, 45}]]
Formula
G.f.: Sum_{i>=1} i*x^i/(1 - x) * Product_{j=1..i} 1/(1 - x^j).
G.f.: (1/(1 - x)) * Sum_{i>=1} x^i/(1 - x^i) * Product_{j>=1} 1/(1 - x^j).
a(n) = Sum_{k=0..n} A006128(k).
a(n) = A124920(n+1) - 1.
a(n) = Sum_{k=1..n} k * A299779(n,k). - Alois P. Heinz, May 14 2018
Comments