cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A285012 Irregular triangle read by rows: T(n,k) is the number of periodic palindromic structures of length n using exactly k different symbols, 1 <= k <= n/2 + 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 6, 5, 1, 1, 7, 6, 1, 1, 13, 19, 7, 1, 1, 15, 25, 10, 1, 1, 25, 64, 43, 10, 1, 1, 31, 90, 65, 15, 1, 1, 50, 208, 220, 85, 13, 1, 1, 63, 301, 350, 140, 21, 1, 1, 99, 656, 1059, 618, 154, 17, 1, 1, 127, 966, 1701, 1050, 266, 28, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 07 2017

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.
Equivalently, the number of necklaces, up to permutation of the symbols, which when turned over are unchanged. When comparing with the turned over necklace a rotation is allowed but a permutation of the symbols is not.

Examples

			Triangle starts:
1
1   1
1   1
1   3    1
1   3    1
1   6    5     1
1   7    6     1
1  13   19     7     1
1  15   25    10     1
1  25   64    43    10     1
1  31   90    65    15     1
1  50  208   220    85    13    1
1  63  301   350   140    21    1
1  99  656  1059   618   154   17   1
1 127  966  1701  1050   266   28   1
1 197 2035  4803  4065  1488  258  21  1
1 255 3025  7770  6951  2646  462  36  1
1 391 6250 21105 24915 12857 3222 410 26 1
1 511 9330 34105 42525 22827 5880 750 45 1
...
Example for n=6, k=2:
Periodic symmetry means results are either in the form abccba or abcdcb.
There are 3 binary words in the form abccba that start with 0 and contain a 1 which are 001100, 010010, 011110. Of these, 011110 is equivalent to 001100 after rotation.
There are 7 binary words in the form abcdcb that start with 0 and contain a 1 which are 000100, 001010, 001110, 010001, 010101, 011011, 011111. Of these, 011111 is equivalent to 000100, 010001 is equivalent to 001010 and 011011 is equivalent to 010010 from the first set.
There are therefore a total of 7 + 3 - 4 = 6 equivalence classes so T(6,2) = 6.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2..6 are A056508, A056509, A056510, A056511, A056512.
Partial row sums include A056503, A056504, A056505, A056506, A056507.
Row sums are A285013.

Programs

  • PARI
    \\ Ach is A304972, Prim is A285037.
    Ach(n,k=n) = {my(M=matrix(n, k, n, k, n>=k)); for(n=3, n, for(k=2, k, M[n, k]=k*M[n-2, k] + M[n-2, k-1] + if(k>2, M[n-2, k-2]))); M}
    Prim(n,k=n\2+1) = {my(A=Ach(n\2+1,k), S=matrix(n\2+1, k, n, k, stirling(n,k,2))); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*(S[(n/d+1)\2, ] + S[n/d\2+1, ] + if((n-d)%2, A[(n/d+1)\2, ] + A[n/d\2+1, ]))/if(d%2, 2, 1) )))}
    T(n,k=n\2+1) = {my(A=Prim(n,k)); Mat(vectorv(n, n, sumdiv(n, d, A[d, ])))}
    { my(A=T(20)); for(n=1, matsize(A)[1], print(A[n,1..n\2+1])) } \\ Andrew Howroyd, Oct 02 2019
    
  • PARI
    \\ column sequence using above code.
    ColSeq(n, k=2) = { Vec(T(n,k)[,k]) } \\ Andrew Howroyd, Oct 02 2019

Formula

Column k is inverse Moebius transform of column k of A285037. - Andrew Howroyd, Oct 02 2019

A328688 Number of double palindrome structures of length n using exactly two different symbols.

Original entry on oeis.org

0, 1, 3, 7, 15, 25, 49, 79, 129, 211, 341, 517, 819, 1275, 1863, 2959, 4335, 6703, 9709, 15067, 21367, 33419, 47081, 72949, 102315, 158887, 220881, 342615, 475107, 734815, 1015777, 1569679, 2161943, 3337951, 4587199, 7069747, 9699291, 14932443, 20445519, 31441339
Offset: 1

Views

Author

Andrew Howroyd, Oct 25 2019

Keywords

Comments

A double palindrome is the concatenation of two palindromes. Permuting the symbols will not change the structure.

Examples

			For n = 4, the 7 structures are: aaab, aaba, aabb, abaa, abab, abba, abbb.
		

Crossrefs

Column 2 of A284877.

A328689 Number of double palindrome structures of length n using exactly three different symbols.

Original entry on oeis.org

0, 0, 0, 2, 5, 21, 42, 122, 225, 570, 990, 2321, 3913, 8827, 14480, 31802, 51425, 110928, 177270, 377722, 598437, 1264307, 1990098, 4175201, 6540605, 13653822, 21301740, 44288071, 68877929, 142736091, 221392266, 457560122, 708106245, 1460194770, 2255365152, 4641851924
Offset: 1

Views

Author

Andrew Howroyd, Oct 25 2019

Keywords

Comments

A double palindrome is the concatenation of two palindromes. Permuting the symbols will not change the structure.

Examples

			For n = 4, the 2 structures are: abac, abcb.
		

Crossrefs

Column 3 of A284877.

A328690 Number of double palindrome structures of length n using exactly four different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 7, 44, 90, 375, 715, 2487, 4550, 14350, 25515, 75724, 132090, 376779, 647995, 1798175, 3060736, 8329046, 14064523, 37725791, 63313250, 168011025, 280576935, 738453366, 1228322550, 3212296488, 5325765931, 13858103244, 22913129140, 59383320585
Offset: 1

Views

Author

Andrew Howroyd, Oct 25 2019

Keywords

Comments

A double palindrome is the concatenation of two palindromes. Permuting the symbols will not change the structure.

Crossrefs

Column 4 of A284877.

A328692 Number of double palindrome structures of length n using a maximum of three different symbols.

Original entry on oeis.org

1, 1, 2, 4, 10, 21, 47, 92, 202, 355, 782, 1332, 2839, 4733, 10103, 16344, 34762, 55761, 117632, 186980, 392790, 619805, 1297727, 2037180, 4248151, 6642921, 13812710, 21522622, 44630687, 69353037, 143470907, 222408044, 459129802, 710268189, 1463532722, 2259952352
Offset: 0

Views

Author

Andrew Howroyd, Oct 25 2019

Keywords

Comments

A double palindrome is the concatenation of two palindromes. Permuting the symbols will not change the structure.

Examples

			For n=4, the 10 structures are: aaaa; aaab, aaba, aabb, abaa, abab, abba, abbb; abac, abcb.
		

Crossrefs

Formula

a(n) = Sum_{k=1..3} A284877(n,k) for n > 0.
a(n) = A328688(n) + A328689(n) + 1.

A328693 Number of double palindrome structures of length n using a maximum of four different symbols.

Original entry on oeis.org

1, 1, 2, 4, 10, 21, 50, 99, 246, 445, 1157, 2047, 5326, 9283, 24453, 41859, 110486, 187851, 494411, 834975, 2190965, 3680541, 9626773, 16101703, 41973942, 69956171, 181823735, 302099557, 783084053, 1297675587, 3355767395, 5548173975, 14317233046, 23623397329, 60846853307
Offset: 0

Views

Author

Andrew Howroyd, Oct 25 2019

Keywords

Comments

A double palindrome is the concatenation of two palindromes. Permuting the symbols will not change the structure.

Crossrefs

Formula

a(n) = Sum_{k=1..4} A284877(n,k) for n > 0.
a(n) = A328690(n) + A328692(n).
Showing 1-6 of 6 results.