cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A285037 Irregular triangle read by rows: T(n,k) is the number of primitive (period n) periodic palindromic structures using exactly k different symbols, 1 <= k <= n/2 + 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 2, 1, 0, 3, 1, 0, 4, 5, 1, 0, 7, 6, 1, 0, 10, 18, 7, 1, 0, 14, 25, 10, 1, 0, 21, 63, 43, 10, 1, 0, 31, 90, 65, 15, 1, 0, 42, 202, 219, 85, 13, 1, 0, 63, 301, 350, 140, 21, 1, 0, 91, 650, 1058, 618, 154, 17, 1, 0, 123, 965, 1701, 1050, 266, 28, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 08 2017

Keywords

Comments

Permuting the symbols will not change the structure.
Equivalently, the number of n-bead aperiodic necklaces (Lyndon words) with exactly k symbols, up to permutation of the symbols, which when turned over are unchanged. When comparing with the turned over necklace a rotation is allowed but a permutation of the symbols is not.

Examples

			Triangle starts:
1
0   1
0   1
0   2    1
0   3    1
0   4    5     1
0   7    6     1
0  10   18     7     1
0  14   25    10     1
0  21   63    43    10     1
0  31   90    65    15     1
0  42  202   219    85    13    1
0  63  301   350   140    21    1
0  91  650  1058   618   154   17   1
0 123  965  1701  1050   266   28   1
0 184 2016  4796  4064  1488  258  21  1
0 255 3025  7770  6951  2646  462  36  1
0 371 6220 21094 24914 12857 3222 410 26 1
0 511 9330 34105 42525 22827 5880 750 45 1
...
Example for n=6, k=2:
There are 6 inequivalent solutions to A285012(6,2) which are 001100, 010010, 000100, 001010, 001110, 010101. Of these, 010010 and 010101 have a period less than 6, so T(6,2) = 6-2 = 4.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 1..6 are: A063524, A056518, A056519, A056521, A056522, A056523.
Partial row sums include A056513, A056514, A056515, A056516, A056517.
Row sums are A285042.

Programs

  • PARI
    \\ Ach is A304972
    Ach(n,k=n) = {my(M=matrix(n, k, n, k, n>=k)); for(n=3, n, for(k=2, k, M[n, k]=k*M[n-2, k] + M[n-2, k-1] + if(k>2, M[n-2, k-2]))); M}
    T(n,k=n\2+1) = {my(A=Ach(n\2+1,k), S=matrix(n\2+1, k, n, k, stirling(n,k,2))); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*(S[(n/d+1)\2, ] + S[n/d\2+1, ] + if((n-d)%2, A[(n/d+1)\2, ] + A[n/d\2+1, ]))/if(d%2, 2, 1) )))}
    { my(A=T(20)); for(n=1, matsize(A)[1], print(A[n,1..n\2+1])) } \\ Andrew Howroyd, Oct 01 2019
    
  • PARI
    \\ column sequence using above code.
    ColSeq(n, k=2) = { Vec(T(n,k)[,k]) } \\ Andrew Howroyd, Oct 01 2019

Formula

T(n, k) = Sum_{d | n} mu(n/d) * A285012(d, k).

A309784 T(n,k) is the number of non-equivalent distinguishing coloring partitions of the cycle on n vertices with exactly k parts. Regular triangle read by rows, n >= 1, 1 <= k <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 4, 2, 1, 0, 1, 8, 10, 3, 1, 0, 1, 25, 32, 16, 3, 1, 0, 4, 62, 129, 84, 27, 4, 1, 0, 7, 176, 468, 433, 171, 37, 4, 1, 0, 18, 470, 1806, 2260, 1248, 338, 54, 5, 1, 0, 31, 1311, 6780, 11515, 8388, 3056, 590, 70, 5, 1, 0, 70, 3620, 25917, 58312, 56065, 26695, 6907, 1014, 96, 6, 1
Offset: 1

Views

Author

Keywords

Comments

The cycle graph is defined for n>=3; extended to n=1,2 using the closed form.
A vertex-coloring of a graph G is called distinguishing if it is only preserved by the identity automorphism of G. This notion is considered in the subject of symmetry breaking of simple (finite or infinite) graphs. A distinguishing coloring partition of a graph G is a partition of the vertices of G such that it induces a distinguishing coloring for G. We say two distinguishing coloring partitions P1 and P2 of G are equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. Given a graph G, we use the notation psi_k(G) to denote the number of non-equivalent distinguishing coloring partitions of G with exactly k parts. For n>=3, this sequence gives T(n,k) = psi_k(C_n), i.e., the number of non-equivalent distinguishing coloring partitions of the cycle C_n on n vertices with exactly k parts.
T(n,k) is the number of primitive (period n) n-bead bracelet structures which are not periodic palindromes using exactly k different colored beads. - Andrew Howroyd, Sep 20 2019

Examples

			The triangle begins:
  0;
  0,  0;
  0,  0,   1;
  0,  0,   1,    1;
  0,  0,   4,    2,    1;
  0,  1,   8,   10,    3,    1;
  0,  1,  25,   32,   16,    3,   1;
  0,  4,  62,  129,   84,   27,   4,  1;
  0,  7, 176,  468,  433,  171,  37,  4, 1;
  0, 18, 470, 1806, 2260, 1248, 338, 54, 5, 1;
  ...
For n=6, we can partition the vertices of C_6 into exactly 3 parts in 8 ways such that all these partitions induce distinguishing colorings for C_6 and that all the 8 partitions are non-equivalent. The partitions are as follows:
    { { 1 }, { 2 }, { 3, 4, 5, 6 } }
    { { 1 }, { 2, 3 }, { 4, 5, 6 } }
    { { 1 }, { 2, 3, 4, 6 }, { 5 } }
    { { 1 }, { 2, 3, 5 }, { 4, 6 } }
    { { 1 }, { 2, 3, 6 }, { 4, 5 } }
    { { 1 }, { 2, 4, 5 }, { 3, 6 } }
    { { 1, 2 }, { 3, 4 }, { 5, 6 } }
    { { 1, 2 }, { 3, 5 }, { 4, 6 } }
For n=6, the above 8 partitions can be written as the following 3 colored bracelet structures: ABCCCC, ABBCCC, ABBBCB, ABBCBC, ABBCCB, ABCBBC, AABBCC, AABCBC. - _Andrew Howroyd_, Sep 22 2019
		

Crossrefs

Column k=2 appears to be A011948.
Columns k=3..4 are A328038, A328039.
Row sums are A328035.

Programs

  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(A=Ach(n), M=R(n), S=matrix(n, n, n, k, stirling(n, k, 2))); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*(M[n/d,] + A[n/d,])/2 - moebius(d)*(S[(n/d+1)\2, ] + S[n/d\2+1, ] + if((n-d)%2, A[(n/d+1)\2, ] + A[n/d\2+1, ]))/if(d%2, 2, 1) )))}
    { my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Oct 02 2019

Formula

T(n,k) = A276543(n,k) - A285037(n,k). - Andrew Howroyd, Sep 20 2019

Extensions

T(10,6) corrected by Mohammad Hadi Shekarriz, Sep 28 2019
a(56)-a(78) from Andrew Howroyd, Sep 28 2019

A056503 Number of periodic palindromic structures of length n using a maximum of two different symbols.

Original entry on oeis.org

1, 2, 2, 4, 4, 7, 8, 14, 16, 26, 32, 51, 64, 100, 128, 198, 256, 392, 512, 778, 1024, 1552, 2048, 3091, 4096, 6176, 8192, 12324, 16384, 24640, 32768, 49222, 65536, 98432, 131072, 196744, 262144, 393472, 524288, 786698, 1048576, 1573376, 2097152, 3146256, 4194304
Offset: 1

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.
A periodic palindrome is just a necklace that is equivalent to its reverse. The number of binary periodic palindromes of length n is given by A164090(n). A binary periodic palindrome can only be equivalent to its complement when there are an equal number of 0's and 1's. - Andrew Howroyd, Sep 29 2017
Number of cyclic compositions (necklaces of positive integers) summing to n that can be rotated to form a palindrome. - Gus Wiseman, Sep 16 2018

Examples

			From _Gus Wiseman_, Sep 16 2018: (Start)
The sequence of palindromic cyclic compositions begins:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (113)    (33)      (115)
                    (112)   (122)    (114)     (133)
                    (1111)  (11111)  (222)     (223)
                                     (1122)    (11113)
                                     (11112)   (11212)
                                     (111111)  (11122)
                                               (1111111)
(End)
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    (* b = A164090, c = A045674 *)
    b[n_] := (1/4)*(7 - (-1)^n)*2^((1/4)*(2*n + (-1)^n - 1));
    c[0] = 1; c[n_] := c[n] = If[EvenQ[n], 2^(n/2-1) + c[n/2], 2^((n-1)/2)];
    a[n_?OddQ] := b[n]/2; a[n_?EvenQ] := (1/2)*(b[n] + c[n/2]);
    Array[a, 45] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Function[q,And[Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And],Array[SameQ[RotateRight[q,#],Reverse[RotateRight[q,#]]]&,Length[q],1,Or]]]]],{n,15}] (* Gus Wiseman, Sep 16 2018 *)

Formula

a(2n+1) = A164090(2n+1)/2 = 2^n, a(2n) = (A164090(2n) + A045674(n))/2. - Andrew Howroyd, Sep 29 2017

Extensions

a(17)-a(45) from Andrew Howroyd, Apr 07 2017

A056504 Number of periodic palindromic structures of length n using a maximum of three different symbols.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 12, 14, 33, 41, 90, 122, 259, 365, 756, 1094, 2233, 3281, 6642, 9842, 19813, 29525, 59292, 88574, 177527, 265721, 532170, 797162, 1595443, 2391485, 4785156, 7174454, 14352233, 21523361, 43053282, 64570082, 129150085, 193710245, 387440172, 581130734, 1162291121
Offset: 0

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{k=1..3} A285012(n, k) for n > 0. - Andrew Howroyd, Oct 01 2019

Extensions

a(17)-a(35) from Andrew Howroyd, Apr 07 2017
a(0)=1 prepended and terms a(36) and beyond from Andrew Howroyd, Oct 01 2019

A056505 Number of periodic palindromic structures using a maximum of four different symbols.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 13, 15, 40, 51, 133, 187, 479, 715, 1815, 2795, 7036, 11051, 27747, 43947, 110061, 175275, 438683, 700075, 1750959, 2798251, 6997643, 11188907, 27975351, 44747435, 111876715, 178973355, 447445692, 715860651, 1789684267, 2863377067, 7158491875
Offset: 0

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{k=1..4} A285012(n, k) for n > 0. - Andrew Howroyd, Oct 01 2019

Extensions

Corrected by T. D. Noe, Oct 25 2006
a(0)=1 prepended and terms a(17) and beyond from Andrew Howroyd, Oct 01 2019

A056506 Number of periodic palindromic structures using a maximum of five different symbols.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 13, 15, 41, 52, 143, 202, 564, 855, 2433, 3845, 11101, 18002, 52662, 86472, 255128, 422005, 1252898, 2079475, 6197590, 10306752, 30796243, 51263942, 153411664, 255514355, 765393943, 1275163905, 3822001141, 6368612302, 19095317552, 31821472612
Offset: 0

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{k=1..5} A285012(n, k) for n > 0. - Andrew Howroyd, Oct 01 2019

Extensions

Corrected by T. D. Noe, Oct 25 2006
a(0)=1 prepended and terms a(17) and beyond from Andrew Howroyd, Oct 01 2019

A056507 Number of periodic palindromic structures using a maximum of six different symbols.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 13, 15, 41, 52, 144, 203, 577, 876, 2587, 4111, 12589, 20648, 65519, 109299, 356613, 601492, 2005545, 3403127, 11522829, 19628064, 67183531, 114700315, 395497312, 676207628, 2343265049, 4010090463, 13942486653, 23874362200, 83192239491, 142508723651
Offset: 0

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{k=1..6} A285012(n, k) for n > 0. - Andrew Howroyd, Oct 01 2019

Extensions

Corrected by T. D. Noe, Oct 25 2006
a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Oct 01 2019

A056509 Number of periodic palindromic structures of length n using exactly three different symbols.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 6, 19, 25, 64, 90, 208, 301, 656, 966, 2035, 3025, 6250, 9330, 19035, 28501, 57740, 86526, 174436, 261625, 525994, 788970, 1583119, 2375101, 4760516, 7141686, 14303011, 21457825, 42954850, 64439010, 128953341, 193448101, 387046700, 580606446, 1161504423
Offset: 1

Views

Author

Keywords

Examples

			For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A285012.

Formula

a(n) = A056504(n) - A056503(n).
Inverse Moebius transform of A056519. - Andrew Howroyd, Oct 01 2019

Extensions

a(17)-a(35) from Andrew Howroyd, Apr 07 2017
Terms a(36) and beyond from Andrew Howroyd, Oct 01 2019

A056508 Number of periodic palindromic structures of length n using exactly two different symbols.

Original entry on oeis.org

0, 1, 1, 3, 3, 6, 7, 13, 15, 25, 31, 50, 63, 99, 127, 197, 255, 391, 511, 777, 1023, 1551, 2047, 3090, 4095, 6175, 8191, 12323, 16383, 24639, 32767, 49221, 65535, 98431, 131071, 196743, 262143, 393471, 524287, 786697, 1048575, 1573375, 2097151, 3146255, 4194303
Offset: 1

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.
For odd n, a palindrome cannot be the complement of itself, so a(n) is given by A284855(n,2)/2 - 1. - Andrew Howroyd, Apr 08 2017

Examples

			From _Andrew Howroyd_, Apr 07 2017: (Start)
Example for n=6:
Periodic symmetry means results are either in the form abccba or abcdcb.
There are 3 binary words in the form abccba that start with 0 and contain a 1 which are 001100, 010010, 011110. Of these, 011110 is equivalent to 001100 after rotation.
There are 7 binary words in the form abcdcb that start with 0 and contain a 1 which are 000100, 001010, 001110, 010001, 010101, 011011, 011111. Of these, 011111 is equivalent to 000100, 010001 is equivalent to 001010 and 011011 is equivalent to 010010 from the first set.
There are therefore a total of 7 + 3 - 4 = 6 equivalence classes so a(6) = 6.
(End)
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 2 of A285012.
Cf. A052551.

Programs

  • Mathematica
    (* b = A164090, c = A045674 *)
    b[n_] := (1/4)*(7 - (-1)^n)*2^((1/4)*(2*n + (-1)^n - 1));
    c[0] = 1;
    c[n_] := c[n] = If[EvenQ[n], 2^(n/2 - 1) + c[n/2], 2^((n - 1)/2)];
    a[n_] := If[OddQ[n], b[n]/2, (1/2)*(b[n] + c[n/2])] - 1;
    Array[a, 45] (* Jean-François Alcover, Jun 29 2018, after Andrew Howroyd *)

Formula

a(n) = A056503(n) - 1.
a(2n + 1) = 2^n - 1. - Andrew Howroyd, Apr 07 2017

Extensions

a(17)-a(45) from Andrew Howroyd, Apr 07 2017

A056510 Number of periodic palindromic structures of length n using exactly four different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 7, 10, 43, 65, 220, 350, 1059, 1701, 4803, 7770, 21105, 34105, 90248, 145750, 379391, 611501, 1573432, 2532530, 6465473, 10391745, 26379908, 42355950, 107091559, 171798901, 433093459, 694337290, 1746630985, 2798806985, 7029341790, 11259666950
Offset: 1

Views

Author

Keywords

Examples

			For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A285012.

Formula

a(n) = A056505(n) - A056504(n).
Inverse Moebius transform of A056521. - Andrew Howroyd, Oct 01 2019

Extensions

Corrected by T. D. Noe, Oct 25 2006
a(17)-a(30) from Andrew Howroyd, Apr 07 2017
Terms a(31) and beyond from Andrew Howroyd, Oct 01 2019
Showing 1-10 of 13 results. Next