A284898 Expansion of Product_{k>=1} 1/(1+x^k)^(k^4) in powers of x.
1, -1, -15, -66, -54, 725, 4580, 12739, 3346, -149076, -791226, -2182124, -1656973, 16553206, 100646954, 318795473, 506196578, -818806580, -9148048880, -36415709566, -87180585636, -70923559814, 484810027389, 2992082912770, 9866919438716, 19936695359140
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..3995
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[Product[1/(1 + x^k)^(k^4) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
-
PARI
x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^4))) \\ Indranil Ghosh, Apr 05 2017
Formula
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A284926(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017